МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ ПРОБЛЕМ ГЕОТЕРМИИ ДАГЕСТАНСКОГО НАУЧНОГО ЦЕНТРА РОССИЙСКОЙ АКАДЕМИИ НАУК

УДК 538.8 + 539.89 + 544.774 + 550.36

№ госрегистрации 01201360102

Инв. № _____

УТВЕРЖДАЮ

Врио Директора Института

Д.К. Джаватов

«____»____2019 г.

ПРОМЕЖУТОЧНЫЙ ОТЧЕТ ЗА 2018 ГОД О НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ

в рамках государственного задания:

«Фундаментальные научные исследования в соответствии с Программой фундаментальных научных исследований государственных академий наук на 2013-2020 годы»;

направление 18: «Физико-технические и экологические проблемы энергетики; тепломассообмен; теплофизические и электрофизические свойства веществ; низкотемпературная плазма и технологии на ее основе» по теме № 10:

<u>Разработка теоретических методов для прогнозирования</u> <u>теплофизических свойств веществ в макро- и нано-размерном</u> <u>состояниях при давлениях и температурах, присущих</u> <u>внешнему ядру Земли</u>

Руководитель темы

_____ М.Н. Магомедов подпись, дата

Махачкала 2019

список исполнителей

Руководитель темы:

М.Н. Магомедов главный научный сотрудник, доктор физ.-мат. наук

ΡΕΦΕΡΑΤ

Отчет состоит из: **4 глав**, **53 стр.**, **13 рисунков**, **2 таблиц**, **72 источников использованной литературы**, списка научных публикаций по теме за отчетный период, включающий в себя **18 опубликованных работ**.

<u>Тема:</u> Разработка теоретических методов для прогнозирования теплофизических свойств веществ в макро- и нано-размерном состояниях при давлениях и температурах, присущих внешнему ядру Земли

<u>Объектами исследования</u> являются кристаллы простых однокомпонентных веществ в макро- и нано-размерном состоянии, а также кристаллы бинарных сплавов замещения.

Цели работы: 1) разработка уравнения состояния нанокристалла простого однокомпонентного вещества с вакансиями и диффундирующими атомами;

2) изучение температуры Дебая, параметров Грюнайзена, температур солидуса и ликвидуса для бинарных сплавов металлов и полупроводников при различных давлениях;

3) изучение исчезновения фазового перехода кристалл-жидкость при уменьшении размера нанокристалла;

4) изучение решеточных свойств изотопно-чистых алмазов изС-12 и из С-13.

В процессе работы на данном этапе нами были получены следующие результаты:

1. Получено уравнение состояния для нанокристалла, в котором имеются как вакансии в решетке, так и делокализованные (диффундирующие) атомы. Расчеты проведены для ОЦК железа при сжатии нанокристалла вдоль изотерм 300 и 1000 К. Показано, что при атмосферном давлении и T = 300 К нанокристалл содержит меньше вакансий на атом, чем макрокристалл, но при T = 1000 К диспергирование макрокристалла ведет к росту вероятности образования вакансий. При уменьшении размера нанокристалла коэффициент самодиффузии возрастает при любом давлении и температуре.

2. Предложена методика расчёта температуры Дебая и параметров Грюнайзена для бинарного сплава замещения. На основании данной методики рассчитаны температур солидуса и ликвидуса для неупорядоченного сплава замещения SiGe и показала хорошее согласие с экспериментальными данными. Показано, что при уменьшении размера нанокристалла твердого раствора замещения разница между температурами ликвидуса и солидуса уменьшатся тем больше, чем заметнее форма нанокристалла отклонена от наиболее энергетически оптимальной формы.

3. На основании модели нанокристалла с вакансиями и делокализованными атомами сделаны расчеты уравнения состояния аргона. Показало, что при уменьшении числа атомов в системе S-петля на изотерме уравнения состояния для фазового перехода (ФП) кристалл-жидкость (К-Ж) уменьшается, и при определенном числе атомов (N_0) S-петля ФПК-Ж исчезает. Показано, что величина N_0 увеличивается при отклонении формы наносистемы от наиболее энергетически оптимальной формы. С ростом температуры на изотерме величина N_0 увеличивается. В кластере из $N < N_0$ атомов ФПК-Ж уже нет.

4. Определены параметры потенциала межатомного взаимодействия для алмаза из 12С и из 13С. На основе полученных параметров рассчитаны как уравнение состояния, так и барические зависимости решеточных свойств изотопно-чистых алмазов при температуре 300 К. Указано – какие решеточные свойства алмаза имеют заметную изотопную зависимость, и как эти зависимости меняются с ростом давления.

<u>Ключевые слова</u>: давление, нанокристалл, поверхностная энергия, бинарный сплав SiGe, железо, изотопы углерода

содержание

	Введение	5
1	Уравнение состояния нанокристалла с вакансиями и диффундирующими атомами	6
2	Метод расчёта температуры Дебая, параметров Грюнайзена и фазовой диаграммы для бинарного сплава замещения	25
3	Изучение исчезновения фазового перехода кристалл-жидкость при уменьшении числа атомов в системе	40
4	Уравнение состояния и свойства изотопно-чистых алмазов из $^{12}{\rm C}$ и $^{13}{\rm C}$	46
	Список научных публикаций по теме за отчетный период 1918 года	51
	Заключение	54

<u>Введение</u>

Известно, что возникновение геотермального тепла нельзя в полной мере объяснить только лишь распадом радиоактивных изотопов калия, урана, тория и др. Поэтому вопрос о возникновении тепла Земли остается открытым. Также не ясна природа и жидкоподобного поведения вещества в условиях внешнего ядра Земли. Наблюдающиеся на границе мантии и внешнего ядра Земли (раздел Гуттенберга: на глубине 2900 ÷ 3000 km, где $P = 1350 \div 1470$ kbar = $135 \div 147$ GPa, $T = 3700 \div 4300$ K) эффекты (резкое увеличение плотности, рост электропроводности с одновременным падением скорости сейсмических волн и вязкости вещества) до сих пор не нашли своего объяснения. Здесь P – давление, T – температура. Исходя из наших результатов по изучению поверхностных и размерных свойств, было сделано предположение, что одним из источников геотермального тепла, а также эффектов на разделе Гуттенберга является процесс экзотермического нанодиспергирования кристаллов под давлением. Именно обоснованию этой гипотезы и посвящена наша работа.

Для выяснения природы экзотермического процесса барической нанофрагментации должны быть с одной стороны изучены зависимости свойств макрокристалла от *P*-*T*условий, вплоть до P = 5 Mbar и T = 5000 K, а с другой стороны разработаны методы для расчета зависимости теплофизических свойств, как от размера, так и от формы поверхности нанокристалла при различных плотностях и температурах. Поэтому наша работа включает в себя как разработку методов для расчета уравнения состояния и барических свойств макрокристалла, так и разработку методов для изучения зависимости свойств от размера и формы поверхности нанокристалла.

На 2018 г. был запланирован э*тап № 5. Активационные процессы*, включающий выполнение следующих теоретических исследований:

1. Разработка уравнения состояния нанокристалла однокомпонентного вещества с вакансиями и диффундирующими атомами.

2. Изучение температуры Дебая, параметров Грюнайзена, температур солидуса и ликвидуса для бинарных сплавов металлов и полупроводников при различных давлениях.

Основные задания, намеченные на 2018 год, выполнены полностью: Разработано уравнение состояния нанокристалла однокомпонентного вещества с вакансиями и диффундирующими атомами. Изучено изменение концентрации вакансий и коэффициента самодиффузии при изменении размера и формы нанокристалла в различных *P*-*T*-условиях. Изучено изменение фазовой диаграммы для бинарного сплава Si-Ge при нанофрагментации сплава.. Также продолжена работа и в других направлениях исследований, генетически связанных с основной темой.

5

<u>1. Уравнение состояния нанокристалла с вакансиями и диффундирующими атомами</u> ВВЕДЕНИЕ

Нанокристаллы экспериментально изучают давно, однако о термодинамике нанокристалла до сих пор ведутся споры [1-3]. Основной вопрос, поднятый еще в работах Дж.В. Гиббса (J.W. Gibbs) и Е.А. Гуггенгейма (E.A. Guggenheim), состоит в следующем: нужно ли считать вещество в поверхностном слое как иную фазу (отличную от "объемной")? Отсюда возникают многие вопросы, как о толщине поверхностного слоя, так и о его плотности и т. д. Вопросы эти до сих пор не получили ясного ответа даже для бесконечной плоской поверхности простого однокомпонентного вещества.

Вместе с тем, даже если считать поверхность нанокристалла геометрической поверхностью, не имеющей объема (т.е. поверхностью Гиббса [4, 5]), то зависимость термодинамических свойств нанокристалла от его размера при различных температурах также не вполне ясна. Для пояснения рассмотрим конденсированную наносистему из N одинаковых атомов, ограниченную поверхностью. Изменение свободной энергии Гельмгольца F_H такой системы при вариации температуры T, объема V, числа атомов и площади поверхности Σ обычно представляют в виде [4, 5]:

$$dF_{H} = \left(\frac{\partial F_{H}}{\partial T}\right)_{N,V,\Sigma} dT + \left(\frac{\partial F_{H}}{\partial V}\right)_{N,T,\Sigma} dV + \left(\frac{\partial F_{H}}{\partial N}\right)_{T,V,\Sigma} dN + \left(\frac{\partial F_{H}}{\partial \Sigma}\right)_{N,V,T} d\Sigma =$$

$$= -S \cdot dT - P \cdot dV + \mu_{e} \cdot dN + \sigma \cdot d\Sigma$$
(1)

откуда и определяют значения *S*, *P*, μ_g и σ – энтропии, давления, химического потенциала и удельной (на единицу площади) поверхностной свободной энергии.

Из формулы (1) легко видеть, что удельная поверхностная энергия равна:

$$\sigma(T,V,N) = \left(\frac{\partial F_H}{\partial \Sigma}\right)_{T,V,N},\tag{2}$$

причем, изменение поверхности *д*Σ здесь должно происходить обратимым путем, т.е. без необратимых разрывов системы.

Но при N = const нельзя изоморфно (т.е. при данной форме поверхности) изменить площадь поверхности, не изменив при этом объем, ибо $\Sigma \sim V^{2/3}$. Поэтому определить функцию σ из выражения (2) можно только путем изохорно-изотермической обратимой упругой деформации формы наносистемы, т.е. из выражения [6, 7]:

$$\sigma(T, \nu, N, f) = \left(\frac{\partial(F_H / N)}{\partial(\Sigma / N)}\right)_{T, N, \nu} = \left(\frac{\partial(F_H / N)}{\partial f}\right)_{T, N, \nu} / \left(\frac{\partial(\Sigma / N)}{\partial f}\right)_{T, N, \nu},$$
(3)

где v = V/N – удельное (на атом) значения объема, f – некоторый параметр, который

управляет формой поверхности наносистемы.

Из (1) видно, что давление в наносистеме должно вычисляться по формуле:

$$P(T, v, N) = -\left(\frac{\partial (F/N)}{\partial v}\right)_{T, N, \Sigma}.$$
(4)

Но при постоянных T, N и Σ невозможно изменить удельный объем ограниченной поверхностью системы. Поэтому, для того чтобы обойти данную неопределенность, представим свободную энергию Гельмгольца в виде [4]:

$$F(T, v, N, f) = F_{in}(T, v) + \sigma(T, v, N, f) \cdot \Sigma(v, N, f) , \qquad (5)$$

где свободная энергия Гельмгольца для объема наносистемы равна:

$$F_{in}(T,v) = N \lim_{N \to \infty} \left[\frac{F(T,v,N,f)}{N} \right]_{v=\text{const}},$$

а поверхность $\Sigma(v, N, f)$ является геометрической поверхностью, не имеющей объема, т.е. поверхностью Гиббса [4, 5].

Таким образом, используя (5), определим давление в наносистеме выражением:

$$P(T, v, N, f) = -\left[\frac{\partial (F/N)}{\partial v}\right]_{T,N} = P_{in}(T, v) - P_{sf}(T, v, N, f).$$
(6)

Здесь *P_{in}* – это "объемное" давление, т.е. давление, определяемое без учета поверхностного члена в (1) и в (5):

$$P_{in}(T,v) = -\lim_{N \to \infty} \left[\frac{\partial (F/N)_{in}}{\partial v} \right]_{T,N}.$$
(7)

Функция P_{sf} – это поверхностное давление, которое равно [7, 8]:

$$P_{sf}(T, v, N, f) = \left[\frac{\partial(\sigma\Sigma/N)}{\partial v}\right]_{T,N} = P_{ls}(1 - \Delta_p).$$
(8)

Первый сомножитель в (8) это давление Лапласа, которое определяется изменением площади поверхности с изменением объема для наносистемы в вакууме:

$$P_{ls}(T, v, N, f) = \sigma \left[\frac{\partial (\Sigma/N)}{\partial v} \right]_{T,N} = \sigma \left(\frac{\Sigma/N}{v} \right) \left[\frac{\partial \ln(\Sigma/N)}{\partial \ln(v)} \right]_{T,N}.$$
(9)

Выражение для функции Δ_p из формулы (8) имеет вид:

$$\Delta_p = -\left[\frac{\partial \ln(\sigma)}{\partial \ln(\Sigma/N)}\right]_{T,N}.$$
(10)

Для жидкой фазы выполняется: $(\partial \sigma / \partial \Sigma)_{T, N} = 0$. Это обусловлено динамической природой жидкого состояния, где большая доля атомов находится в делокализованном состоянии. Изотермическое растяжение площади "гиббсовской" поверхности жидкой фазы вызывает приток к ее поверхности новых атомов из объема. Если приток атомов к

поверхности происходит со скоростью, достаточной для того, чтобы поверхностная плотность атомов сохранялась неизменной, то величина σ для жидкой фазы не будет меняться с ростом Σ , и значение Δ_p будет равным нулю. Как было показано в [9], условие: $\Delta_p = 0$, можно использовать в качестве "поверхностного" критерия плавления для кристалла с геометрической поверхностью Гиббса.

Для твердой фазы считать $\Delta_p = 0$ нельзя. Причем, наличие функции Δ_p в (8) приводит к эффектам, присущим только для твердой фазы наносистемы [7, 8]:

1) так как $\Delta_p > 0$, то для нанокристалла всегда выполняется: $P_{sf} < P_{ls}$,

2) при $\Delta_p > 1$ поверхностное давление становится растягивающим: $P_{sf} < 0$.

Таким образом, для получения уравнения состояния нанокристалла с геометрической поверхностью Гиббса необходимо корректно определить удельную поверхностную энергию с помощью выражения (3). Для этого необходимо принять некую геометрическую модель нанокристалла с варьируемой формой поверхности. В работах [7-10] эта задача была решена для идеального нанокристалла, в решетке которого нет вакансий, и атомы которого не могут диффундировать по объему. В данной работе будут получены выражения для "безопорного" (free standing) нанокристалла простого вещества, в котором учтены как вакансии в структуре, так и наличие делокализованных атомов.

МОДЕЛЬ КРИСТАЛЛА С УЧЕТОМ ДЕЛОКАЛИЗОВАННЫХ АТОМОВ И ВАКАНСИЙ В РЕШЕТКЕ

Будем полагать, что рассматриваемая система образует решеточную структуру из N + N_v сферических ячеек одинакового объема, из которых N_v ячеек вакантны, а N ячеек заняты тождественными сферически симметричными атомами, масса каждого из которых равна m. Из N атомов только часть атомов ($N - N_d$) локализована в ячейках, а другая часть (N_d) – делокализована, т.е. они могут перемещаться по всему объему. Причем со временем локализованный атом, возбудившись, может стать делокализованным, и наоборот. Пусть атомы взаимодействуют посредством потенциала Ми-Леннард-Джонса:

$$\varphi(r) = \frac{D}{(b-a)} \left[a \left(\frac{r_{o}}{r} \right)^{b} - b \left(\frac{r_{o}}{r} \right)^{a} \right] \quad , \tag{11}$$

где D и $r_{\rm o}$ – глубина и координата минимума потенциала, $b > a \ge 1$ – параметры.

Если в решетке содержится N_v вакансий, однородно распределенных по объему, то первое координационное число (т.е. число ближайших соседних атомов) равно:

$$k_{n} = \frac{k_{n}^{o}N}{N+N_{v}} = k_{n}^{o}(1-\phi_{v}), \qquad (12)$$

где k_n^{o} – число ближайших к данному атому ячеек (как занятых, так и вакантных), т.е. это первое координационное число при $N_v = 0$, ϕ_v – вероятность образования вакансии в решетке простого вещества [7, 11]:

$$\phi_{\nu} = \frac{N_{\nu}}{N + N_{\nu}} = \frac{2}{\pi^{1/2}} \int_{[E_{\nu}/(k_B T)]^{1/2}}^{\infty} \exp(-t^2) \, \mathrm{d} t \quad , \tag{13}$$

где *k*_{*B*} – постоянная Больцмана, *E*_{*v*} – энергия создания вакантного узла в решетке.

Объем системы равен сумме объемов, приходящихся на одну (занятую либо вакантную) ячейку (*v_a*), форму которой считаем сферической:

$$V = \frac{\pi}{6k_p} (N + N_v) c^3 = \frac{v_a}{k_p} \frac{N}{(1 - \phi_v)}, \qquad v_a = \frac{\pi}{6} c^3 = \frac{V}{N} k_p (1 - \phi_v), \qquad (14)$$

$$c_{\rm o} = \left(\frac{6k_p V}{\pi N}\right)^{1/3} = \left[\frac{6v_a(\phi_v = 0)}{\pi}\right]^{1/3},\tag{15}$$

где $c = c_0(1 - \phi_v)^{1/3}$ – расстояние между центрами ближайших ячеек, k_p – коэффициент упаковки структуры из $N + N_v$ сферических ячеек, c_0 – расстояние между центрами ближайших ячеек в исходной (не срелаксировавшей в активированное вакансиями состояние) безвакансионной (при $N_v = 0$) системе (на это указывает индекс "o").

Учтя, что центр делокализованного атома может перемещаться по всему объему системы, а центр локализованного атома только в пределах ячейки, в которой он локализован, для удельной (на атом) свободной энергии Гельмгольца макроскопической системы (где $N \to \infty$ и $V \to \infty$ при N/V = const) было получено выражение [7, 12, 13]:

$$f_H = f_i + f_s + f_w + f_d \,. \tag{16}$$

Здесь f_i — это удельная свободная энергия трансляционного движения делокализованных атомов:

$$f_i = -x_d k_B T \left[\left(\frac{T}{A_d} \right)^{3/2} \frac{V}{V_0} \right], \qquad (17)$$

где введены обозначения:

$$A_{d} = \left(\frac{2\pi \hbar^{2}}{m k_{B}}\right) \left(\frac{N}{e V_{0}}\right)^{2/3}, \qquad V_{0} = N \left(\frac{\pi}{6k_{p}}\right) r_{0}^{3}.$$
(18)

Здесь \hbar – постоянная Планка, е = 2.718, x_d – доля делокализованных атомов, т.е. это вероятность атома иметь кинетическую энергию выше, чем E_d – энергии делокализации атома [7, 14]:

$$x_{d} = \frac{N_{d}}{N} = \frac{2}{\pi^{1/2}} \int_{E_{d}/(k_{B}T)}^{\infty} t^{1/2} \exp(-t) dt$$
 (19)

Второе слагаемое в (16) – это удельная свободная энергия статического взаимодействия всех атомов между собой, которая при использовании приближения "взаимодействия только ближайших соседей" имеет вид:

$$f_s = \left(\frac{k_n^{\rm o}}{2}\right) (1 - \phi_v) DU_{\rm o}(R) , \qquad (20)$$

где $R = r_0/c$ – относительная линейная плотность кристалла,

$$U_{o}(R) = \frac{1}{(b-a)} \left(aR^{b} - bR^{a} \right), \qquad R = \frac{r_{o}}{c} = \left[\frac{V_{0}}{V(1-\phi_{v})} \right]^{1/3}$$

Третье слагаемое в (16) – это удельная свободная энергия колебательного движения локализованных атомов по модели кристалла Эйнштейна (Θ_E – температура Эйнштейна):

$$f_w = 3(1 - x_d)k_B T \left\{ 0.5 \frac{\Theta_E}{T} + \ln \left[1 - \exp\left(-\frac{\Theta_E}{T}\right) \right] \right\} \quad .$$
⁽²¹⁾

Член f_d – свободная энергия динамического взаимодействия делокализованных атомов из-за их смещения от центров ячеек при миграции по объему. В приближении "взаимодействия только ближайших соседей" для этой функции в работах [7, 12, 15] было получено выражение:

$$f_d = \frac{x_d k_n^{\rm o}(1-\phi_v)abD}{2(b-a)} \left\{ R^b \left[\frac{l_3(b,\xi_p)}{b} \right] - R^a \left[\frac{l_3(a,\xi_p)}{a} \right] \right\},\tag{22}$$

где введены обозначения:

$$l_{3}(k,t) = \frac{(1+t)^{k-2} - (1-t)^{k-2}}{2(k-2)t(1-t^{2})^{k-2}} - 1, \qquad \qquad \xi_{p} = \frac{0.5}{3^{1/2}k_{p}^{1/3}} < 0.5.$$
(23)

Входящие в (12)-(22) функции E_v , E_d и Θ_E были определены для макросистемы простого вещества в работах [7, 11-14]. Энергия создания вакансии имеет вид [7, 11]:

$$E_{v} = \frac{E_{L}}{1 + x_{d} [(C_{D}E_{L} / k_{B}T) - 1]} , \qquad (24)$$

где введены обозначения:

$$E_{L} = \frac{m}{k_{n}^{o}} \left(\frac{c_{o}k_{B}\Theta_{Eo}}{2\hbar}\right)^{2} f_{y}(y_{wo}), \quad C_{D} = \frac{4k_{n}^{o}}{3k_{p}^{2/3}}, \quad f_{y}(y_{w}) = \frac{2}{y_{w}} \frac{[1 - \exp(-y_{w})]}{[1 + \exp(-y_{w})]}, \quad y_{wo} = \frac{\Theta_{Eo}}{T}.$$
 (25)

Индекс "о" у функций c_0 и Θ_{E_0} означает, что функции рассчитаны для исходной (не срелаксировавшей в активированное вакансиями состояние) безвакансионной

виртуальной решетки (т.е. при $\phi_v = 0$).

Для энергии делокализации атома было получено выражение [7, 14]:

$$E_{d} = \left(\frac{3}{8\pi^{2}}\right) m \left(\frac{c_{o}k_{B}\Theta_{Eo}}{\hbar k_{p}^{1/3}}\right)^{2} f_{y}(y_{wo}) = E_{d1}f_{y}(y_{wo}) = C_{ld}E_{L},$$
(26)

где введены обозначения:

$$C_{ld} = \frac{3k_n^{\circ}}{2\pi^2 k_p^{2/3}} = \left(\frac{9}{8\pi^2}\right) C_D , \quad E_{d1} = E_d (f_y(y_{wo}) = 1) = \frac{3m}{8k_p^{2/3}} \left(\frac{3c_o k_B \Theta_o}{4\pi\hbar}\right)^2.$$
(27)

Здесь Θ – температуры Дебая, которая связана с температурой Эйнштейна соотношением: $\Theta = (4/3)\Theta_E$ [5, 15, 16]. Для функции Θ было получено выражение [7, 17]:

$$\Theta = A_{w} \xi \left[-1 + \left(1 + \frac{8D}{k_{B} A_{w} \xi^{2}} \right)^{1/2} \right], \qquad (28)$$

где введены следующие обозначения:

$$\xi = \frac{9}{k_n^{o}}, \qquad A_w = K_R \frac{5k_n ab(b+1)}{144(b-a)} \left(\frac{r_o}{c}\right)^{b+2}, \qquad K_R = \frac{\hbar^2}{k_B r_o^2 m}.$$
 (29)

Было показано, что такие определения функций E_v , E_d и Θ_E позволяют получить хорошо согласующиеся с экспериментальными данными результаты. Кроме этого, использование входящих в (16) функций E_v , E_d и Θ_E в виде (24)-(29) приводит к выполнимости как третьего начала термодинамики в "сильной" формулировке Планка, так и к согласованности термического и калорического уравнений состояния для макросистемы.

МОДЕЛЬ НАНОКРИСТАЛЛА С ВАКАНСИЯМИ

Обобщим формализм из (12)-(29) на случай нанокристалла из $N + N_v = N/(1 - \phi_v)$ одинаковых ячеек, из которых N_v вакантных ячеек однородно распределено по объему и поверхности нанокристалла. Как и в работах [6-10] положим, что нанокристалл со свободной поверхностью имеет вид прямоугольного параллелепипеда с квадратным основанием, ограненный гранями типа (100) с геометрической поверхностью Гиббса. Ячейки образуют кристаллическую структуру с коэффициентом упаковки k_p . Величина $f = N_{ps}/N_{po} = N_{ps}^{\circ}/N_{po}^{\circ}$ – представляет собой параметр формы, который определяется отношением числа N_{ps}° атомов (или $N_{ps} = N_{ps}^{\circ}/(1 - \phi_v)^{1/3}$ ячеек) на боковом ребре к числу N_{po}° атомов (или $N_{po} = N_{po}^{\circ}/(1 - \phi_v)^{1/3}$ ячеек) на ребре квадратного основания. Для стержневидной формы f > 1, для куба f = 1, для пластинчатой формы f < 1. Число ячеек и атомов в нанокристалле определенной формы равно:

$$N + N_{v} = f \frac{N_{po}^{3}}{\alpha} = f \frac{(N_{po}^{0})^{3}}{\alpha(1 - \phi_{v})}, \qquad \qquad N = f \frac{(N_{po}^{0})^{3}}{\alpha}, \qquad (30)$$

где $\alpha = \pi/(6 k_p)$ – параметр структуры.

Очевидно, что параметр формы f может изменяться в пределах:

$$\frac{2}{\left[(N+N_{v})\alpha/2\right]^{1/2}} \le f \le \frac{(N+N_{v})\alpha}{8},$$
(31)

где левая величина относится к пластине, а правая – к стержню толщиной в две ячейки.

Ограничение системы поверхностью приведет к обрыву связей на границе. Поэтому, если использовано приближение "взаимодействия только ближайших соседей", то вместо первого координационного числа (k_n) необходимо брать $\langle k_n \rangle$ – среднее (по всей наносистеме) значение первого координационного числа, которое будет зависеть как от размера, так и от формы наносистемы. При этом структуру системы будем полагать неизменной: k_p = const. Данную модель нанокристалла в виде прямоугольного параллелепипеда (Rectangular Parallelepiped), форму которого можно варьировать с помощью параметра формы *f*, назовем RP-моделью с вакансиями, т.е. RP(vac)-моделью.

В рамках RP(vac)-модели нормированное среднее значение первого координационного числа как функция аргументов α , $N + N_v$ и *f* имеет вид [6, 7]:

$$k_n^* = \frac{\langle k_n(N+N_v, f) \rangle}{k_n(\infty)} = 1 - Z_s(f) \left(\frac{\alpha^2}{N+N_v}\right)^{1/3} = 1 - Z_s(f) \left(\frac{\alpha^2}{N}(1-\phi_v)\right)^{1/3},$$
(32)

где $k_n(\infty)$ — первое координационное число (т.е. число ближайших к данному атому занятых атомами ячеек) для макрокристалла:

$$k_{n}(\infty) = \frac{k_{n}^{o}(\infty)N}{N+N_{v}} = k_{n}^{o}(\infty)(1-\phi_{v}).$$
(33)

Таким образом, зависимость координационного числа от α , *N*, ϕ_{ν} и *f* имеет вид:

$$k_n(N,\phi_v) = k_n^{0}(\infty)(1-\phi_v) \left[1 - Z_s(f) \left(\frac{\alpha^2}{N} (1-\phi_v) \right)^{1/3} \right].$$
 (34)

Функция формы: $Z_s(f) = (1 + 2f)/(3f^{2/3})$, достигает минимума равного единице при f = 1, т.е. для формы куба. Для пластинчатых (f < 1) или стержневидных (f > 1) форм значение функции формы больше единицы: $Z_s(f \neq 1) > 1$. Поэтому функция $k_n(f)^*$ при любом значении $N + N_v$ имеет максимум при f = 1, т.е. для наиболее энергетически устойчивой (кубической) формы прямоугольного параллелепипеда.

Объем и площадь поверхности для RP(vac)-модели равны:

$$V = (N_{po}^{o})^{3} f c^{3} / (1 - \phi_{v}) = (N + N_{v}) \alpha c^{3} = (N_{po}^{o})^{3} f c_{o}^{3},$$

$$\Sigma = 6 c^{2} \alpha_{s} [(N + N_{v})\alpha]^{2/3} Z_{s}(f) = 6 c_{o}^{2} \alpha_{s} (N\alpha)^{2/3} Z_{s}(f), \qquad (35)$$

где α_s – коэффициент, учитывающий плотность упаковки атомов на грани (т.е. на геометрической поверхности Гиббса) нанокристалла: $\alpha_s \cong \alpha^{2/3}$. Легко видеть, что объем нанокристалла зависит от формы системы только через зависимость величины c_0 или $c = c_0 \cdot (1 - \phi_v)^{1/3}$ от размера и формы нанокристалла.

Кубическая форма может реализовываться только при определенном числе ячеек, из которых можно построить куб: $(N + N_{\nu})_{cub} = (N_{po}{}^{o})^{3}/[\alpha(1 - \phi_{\nu})]$, где $N_{po}{}^{o} = 2, 3, 4,...$ При "некубичном" значении числа ячеек: $N + N_{\nu} \neq (N + N_{\nu})_{cub}$ параллелепипед может иметь либо пластинчатую, либо стержневидную форму, причем выполняется:

$$k_n((N+N_v)_{cub} \pm 1)^* < k_n(N+N_v)_{cub}^*$$

Таким образом, изоморфная (т.е. рассчитанная при f = const) зависимость $k_n(N+N_v)$ монотонно уменьшается при $N + N_v \rightarrow N_{\min} = 8 / [\alpha(1 - \phi_v)]$, но общая зависимость $k_n(N+N_v)$ имеет осциллирующий вид с максимумами в точках $k_n(N+N_v)_{\text{cub}}$, соответствующих нанокристаллам с кубической формой, и с минимумами при таких значениях $N + N_v \neq (N + N_v)_{\text{cub}}$, из которых можно построить только стержень. А так как многие свойства нанокристалла определяются именно значением $k_n(N)$, то зависимость этих свойств от Nтакже будет иметь осциллирующий вид. Поэтому изоморфная производная $(\partial k_n/\partial N)_f$ не будет иметь никаких особенностей, чего нельзя сказать о неизоморфной производной $(\partial k_n/\partial N)_{x \neq f}$.

В рамках RP(vac)-модели удельная поверхностная энергия грани (100) и давление Лапласа определяются выражениями, которые следуют из (3) и (9):

$$\sigma = \left(\frac{\partial (F/N)}{\partial k_n *}\right)_{T,N,\nu} \left(\frac{\partial k_n *}{\partial Z_s(f)}\right)_{N,k_p} \left/ \left(\frac{\partial (\Sigma/N)}{\partial Z_s(f)}\right)_{N,c,k_p} = \frac{-(1-\phi_{\nu})}{6c^2\alpha_s} \left(\frac{\partial (F/N)}{\partial k_n *}\right)_{T,N,\nu}, \quad (36)$$

$$P_{ls} = \frac{2\Sigma}{3V} \sigma = \frac{4\alpha_s Z_s(f)}{[\alpha(N+N_v)]^{1/3} c(N,f)} \sigma = 4\alpha_s \frac{(1-k_n^*)}{\alpha c(N,f)} \sigma .$$
(37)

Очевидно, что в "термодинамическом пределе" (т.е. когда $N \to \infty$ и $V \to \infty$ при v = V/N = const) функция $\sigma(N)$ стремится к значению $\sigma(N = \infty)$, а функции P_{ls} из (37) и P_{sf} из (8) исчезают, ибо в этом случае, согласно (32), имеем: $k_n(N \to \infty)^* \to 1$.

Таким образом, использование функции (34) в формализме (12)-(29) при k_p = const позволяет получить зависимость свободной энергии Гельмгольца, как от размера (числа атомов *N*), так и от формы нанокристалла при данных значениях температуры и удельного объема: v = V/N, для нанокристалла со свободной геометрической поверхностью Гиббса.

РЕЗУЛЬТАТЫ РАСЧЕТОВ ДЛЯ ЖЕЛЕЗА

Для расчетов возьмем кристалл железа (m(Fe) = 55.847 а. е. м.) с объемно центрированной кубической (ОЦК) структурой: $k_n^{o}(\infty) = 8$, $k_p = 0.6802$. Параметры межатомного потенциала Ми-Леннард-Джонса (11) для ОЦК железа были определены и апробированы при расчете свойств макрокристалла в работе [18]. Они равны:

$$r_{\rm o} = 2.4775 \times 10^{-10} \,\mathrm{m}, \qquad D/k_B = 12576.7 \,\mathrm{K}, \qquad a = 2.95, \qquad b = 8.26.$$
 (38)

Отметим, что в работе [19] размерные свойства нанокристалла ОЦК железа были изучены в рамках RP-модели идеального нанокристалла, в решетке которого нет вакансий, и атомы которого не могут диффундировать по объему. В данной работе размерные свойства нанокристалла ОЦК железа будут рассчитаны для обобщенной RP-модели, в которой учтены и вакансии в структуре, и наличие делокализованных атомов.

Сравнение рассчитанных данным методом термодинамических параметров с экспериментальными оценками, как для образования вакансий, так и для самодиффузии в макрокристалле ОЦК железа было проведено нами в работах [7, 13].

Исходя из (38), параметры модели при $v/v_0 = (c_0/r_0)^3 = 1$ будут равны:

$$v_{o} = [\pi/(6k_{p})]r_{o}^{3} = 7.0494 \text{ см}^{3}/\text{моль}, K_{R} = 0.1415 \text{ K}, A_{w}(1) = 1.6703 \text{ K}, X_{w}(1) = 4.605 \times 10^{-3},$$

 $\Theta_{E}(1) = 306.055 \text{ K}, \Theta(1) = 408.073 \text{ K}, \gamma(1) = 1.702, q(1) = 7.874 \times 10^{-3},$

где, в соответствии с (28), первый (γ) и второй (q) параметры Грюнайзена, а также функция X_w , характеризующая роль квантовых эффектов, имеют вид:

$$\gamma = -\left(\frac{\partial \ln \Theta}{\partial \ln V}\right)_T = \frac{b+2}{6(1+X_w)}, \qquad q = \left(\frac{\partial \ln \gamma}{\partial \ln V}\right)_T = \gamma \frac{X_w(1+2X_w)}{(1+X_w)}, \qquad X_w = \frac{A_w\xi}{\Theta}.$$
 (39)

Расчеты функции свободной энергии Гельмгольца f_H из (16) были выполнены для двух изотерм: для низкой ($T/\Theta < 1$): T = 300 К, и для высокой ($T/\Theta > 1$) температуры: T = 1000 К. Расчет термического уравнения состояния: $P(T, v) = -(\partial f_H/\partial v)_T$, проводился численным дифференцированием результата расчета изотермической зависимости функции f_H по аргументу v.

На рис. 1 показаны изоморфно-изомерные (при постоянных значениях f и N) зависимости давления от нормированного объема (v/v_0) в кубическом (f = 1) нанокристалле ОЦК-Fe. Сравнение рассчитанной таким путем зависимости $P(v/v_0, T)$ с экспериментальными данными для макрокристалла ОЦК-Fe было проведено в [18], поэтому здесь мы этого делать не будем. На рис. 1 сплошные линии получены для макрокристалла (при $N_{po} = 10^6$, т.е. при $N = 1.3 \times 10^{18}$), а пунктирные линии – для нанокристалла при N = 665 (т.е. при $N_{po} = 8$). Две нижние линии – изотермы T = 300 K, две верхние линии – изотермы T = 1000 K. Уменьшение роста давления при переходе от макро- к нанокристаллу указывает на уменьшение модуля упругости: $B_T = -v(\partial P/\partial v)_T$, с уменьшением размера, как это и было показано другими методами в работах [19, 20].

Рис. 1. Изоморфно-изомерные зависимости давления от нормированного объема в ОЦК-Fе. Сплошные линии получены для макрокристалла, а пунктирные линии – для кубического нанокристалла при *N* = 665. Две нижние линии – изотермы *T* = 300 K, две верхние линия – изотермы *T* = 1000 K.

Из рис. 1 видно, что при определенном значении относительного объема $(v/v_0)_0$ зависимости $P(v/v_0)$ для нанокристалла и макрокристалла пересекаются. Таким образом, при $(v/v_0)_0$ поверхностное давление $(P_{sf}(v) = P(v)_{macro} - P(v)_{nano})$ становится равным нулю: $P_{sf}(v/v_0)_0 = 0$, следовательно: $\Delta_p = 1$. При $v/v_0 < (v/v_0)_0$ поверхностное давление сжимает нанокристалл $(P_{sf} > 0)$, а при $v/v_0 > (v/v_0)_0$ поверхностное давление нанокристалл растягивает: $P_{sf} < 0$. Величина $(v/v_0)_0$ уменьшается как при изоморфно-изомерном росте температуры, так и при изоморфно-изотермическом уменьшении N, или при изомерноизотермическом отклонении формы нанокристалла от наиболее оптимальной формы (для RP-модели – от формы куба). Из рис. 1 также следует, что давление в нанокристалле переходит через ноль при значение v/v_0 большем, чем для макрокристалла.

На рис. 2 показаны рассчитанные по формуле (36) барические изоморфно-изомерные зависимости удельной поверхностной энергии (в 10^{-3} Дж/м²) для грани (100) в ОЦК-Fe. Сплошные линии получены для макрокристалла, а пунктирные линии – для нанокристалла кубической (f = 1) формы при N = 665. Две верхние линии – изотермы T = 300 K, две нижние линии – изотермы T = 1000 K. Видно, что с уменьшением температуры возникает область давления, где удельная поверхностная энергия нанокристалла становится больше, чем у макрокристалла: $\sigma(N) > \sigma(\infty)$. Достигнув максимума изомерно-

изотермическая зависимость $\sigma(P)$ уменьшается с ростом *P*, и при определенном давлении (*P*_{fr}) переходит в отрицательную область. Расчеты показали, что давление фрагментации (при котором $\sigma(P_{fr}) = 0$) равно: для макрокристалла (т.е. при $N = 1.3 \times 10^{18}$): *P*_{fr} = 5160 кбар для *T* = 300 K и *P*_{fr} = 5136 кбар для *T* = 1000 K; для нанокристалла (при N = 665) давление фрагментации меньше: *P*_{fr} = 4663 кбар для *T* = 300 K и *P*_{fr} = 4637 кбар для *T* = 1000 K.

Рис. 2. Барические изоморфно-изомерные зависимости удельной поверхностной энергии для грани (100) в ОЦК-Fe. Сплошные линии получены для макрокристалла, а пунктирные линии – для нанокристалла кубической формы при *N* = 665. Две верхние линии – изотермы *T* = 300 K, две нижние линия – изотермы *T* = 1000 K.

Зная уравнение состояния можно изучить размерные зависимости различных свойств нанокристалла при постоянных *P*-*T*-условиях. На рис. 3-8 показаны изоморфные изотермо-изобарические (т.е. при постоянных значениях *f*, *T* и *P*) зависимости различных свойств от числа атомов (*N*) для кубического (*f* = 1) нанокристалла ОЦК-Fe. На рис. 3*a*-8*a* представлены изобары, полученные при атмосферном давлении (*P* = 1 бар), а на рис. 3*b*-8*b* – при *P* = 100 кбар. Линия с кубиками – изотерма *T* = 300 K, линия с кружками – изотерма *T* = 1000 K. Символы на изоморфе указывают положение разрешенных значений *N* = $f(N_{po}^{\circ})^{3}/\alpha$ в нанокристалле кубической формы (т.е. при *f* = 1 и N_{po}° = 2, 3, 4, ...) при равномерном (равновесном) распределении вакансий и мигрирующих атомов по объему и поверхности нанокристалла со свободной геометрической поверхностью Гиббса.

На рис. З показана размерная зависимость для $\sigma(100) [10^{-3} \text{ Дж/м}^2]$ – удельной поверхностной энергия грани (100), рассчитанной по формуле (36). Из рис. З видно, что при определенных *P*-*T*-условиях удельная поверхностная энергия не зависит от размера нанокристалла. Причем, как видно из рис. 2, если на изотермах $T \ge 1000$ K нет таких *P*-точек, то при $T \le 300$ K на изотермах имеются две *P*-точки, где $\sigma(N) = \sigma(\infty)$.

Рис. 3. Изоморфные изотермо-изобарические зависимости от числа атомов (*N*) в кубическом нанокристалле ОЦК-Fe для удельной поверхностной энергии грани (100). Слева представлены изобары полученные при атмосферном давлении (*P* = 1 бар), а справа – при *P* = 100 кбар.

Рис. 4. Изоморфные изотермо-изобарические зависимости от числа атомов в кубическом нанокристалле ОЦК-Fe для поверхностного давления.

Рис. 5. Изоморфные изотермо-изобарические зависимости от числа атомов в кубическом нанокристалле ОЦК-Fe для $c(N, \phi_v)/r_o$ – нормированного на r_o расстояния между центрами ближайших атомов.

На рис. 4 показана размерная зависимость для P_{sf} [кбар] – поверхностного давления, которая рассчитана по формуле (8) путем численного дифференцирования вдоль изотермы функции ($\sigma\Sigma/N$) по аргументу v. Из рис. 4 видно, что поверхностное давление для нанокристалла много меньше, чем давление, рассчитываемое по формуле Лапласа из (9) или (36). Это означает, что здесь значение Δ_p положительное.

На рис. 5 показана размерная зависимость для $c(N, \phi_v)/r_o$ – нормированного на r_o расстояния между центрами ближайших атомов, рассчитанное из значений v/v_o и ϕ_v , которые соответствуют данным величинам *N* и *P* по формуле: $c/r_o = [(v/v_o)(1 - \phi_v)/\alpha]^{1/3}$.

Из рис. 1, 4 и 5 видно, что при низком общем давлении поверхностное давление растягивает нанокристалл: $P_{sf} = P(v) - P(v)_{nano} < 0$ и $\Delta_p > 1$, а при $P \ge 100$ кбар поверхностное давление нанокристалл сжимает: $P_{sf} > 0$ и $0 < \Delta_p < 1$. Физические причины такой зависимости состоят в том, что на поверхности нанокристалла имеются две конкурирующие силы [7, 8, 10]:

1. Результирующая составляющая сил притяжения поверхностного атома со стороны окружающих его соседних атомов. Эта сила (максимальная для атомов на ребрах, и, особенно в вершинах параллелепипеда) стремится втянуть поверхностный атом внутрь нанокристалла. Она сжимает нанокристалл тем сильнее, чем меньше величина "размерного аргумента" k_n *.

2. Сила, возникающая из-за колебаний ("нулевых" при T = 0 К, либо "тепловых" при T > 0 К) атомов. Эта сила стремится вытолкнуть поверхностный атом из нанокристалла, и именно она растягивает нанокристалл. Причем энергия и давление, обусловленные колебаниями атомов, растут с температурой.

При низких температурах для "не квантовых" кристаллов преобладает первая сила. Но при изоморфно-изомерно-изохорическом увеличении температуры растет вторая сила, и при T_0 – "температуре нулевого поверхностного давления" величины этих сил уравновешивают друг друга. Причем, функция T_0 определяется тремя аргументами [7, 10]:

1) "размерным аргументом" k_n *, который зависит от размера и от формы нанокристалла;

2) относительной линейной плотностью нанокристалла $R = r_0/c$;

3) "параметром квантованности" макрокристалла: $X_w(1) = A_w(1)\xi/\Theta(1)$, который представляет собой отношение энергии "нулевых колебаний" атома в решетке к энергии парного межатомного взаимодействия при нулевом давлении, т.е. при R = 1.

Из рис. 5 видно, что при низком давлении увеличение c/r_0 при изоморфном уменьшении размера происходит тем заметнее, чем выше температура, а при высоком давлении размерное сжатие происходит заметнее вдоль изотермы низкой температуры.

18

Рис. 6. Изоморфные изотермо-изобарические зависимости вероятности образования вакансии от числа атомов в кубическом нанокристалле ОЦК-Fe.

На рис. 6 показаны изоморфно-изотермические зависимости для ϕ_v (вероятности образования вакансии от числа атомов (*N*) в кубическом нанокристалле ОЦК-Fe). Из рис. 6 следует, что при изотермо-изобарическом росте *N* при атмосферном давлении и температуре *T* = 300 K функция $\phi_v(N)$ растет, а при *T* = 1000 K функция $\phi_v(N)$ уменьшается с ростом *N*. То есть при температуре *T* = 300 K малый нанокристал содержит меньше вакансий на атом, чем макрокристалл. Но диспергирование макрокристалла при температуре *T* = 1000 K ведет к росту вероятности образования вакансии. При изотермо-изобарическом росте нанокристалла при давлении 100 кбар функция $\phi_v(N)$ растет с ростом *N*, как при 300 K, так и при 1000 K. Таким образом, малый нанокристал при *P* = 100 кбар содержит меньше вакансий на атом, чем макрокристаллы будут образовываться либо при низких давлениях и низких температурах, либо при высоких давлениях и любых температурах.

Ввиду отсутствия статистической теории для нанокристалла простого однокомпонентного вещества, до сих пор не было ясно – как изменяются при изобарическом уменьшении размера нанокристалла такие активационные параметры, как вероятность образования вакансии и доля делокализованных (диффундирующих) атомов. В известных на сегодня подходах к решению этой задачи (см., например, [21-24]) используется корреляция между удельной энергией связи нанокристалла (E_c) , температурой Дебая (Θ), температурой плавления (T_m) с энергией активационного процесса: с энергией образования вакансии (E_v) , либо с энергией самодиффузии (E_d) . Предполагая, что при уменьшении диаметра (dia) нанокристалла не изменяются ни кристаллическая структура, ни форма поверхности, ни межатомное расстояние, используется следующая корреляционная зависимость [21-24]:

$$\frac{E_{\nu}(dia)}{E_{\nu}(\infty)} = \frac{E_d(dia)}{E_d(\infty)} = \frac{E_c(dia)}{E_c(\infty)} = \left[\frac{\Theta(dia)}{\Theta(\infty)}\right]^2 = \frac{T_m(dia)}{T_m(\infty)} = 1 - \frac{\alpha_{shape}}{dia},$$
(40)

где α_{shape} – параметр, который зависит от формы нанокристалла, и который обычно определяют из размерной зависимости температуры плавления, ибо функция $T_m(dia)$ наиболее легко (а потому и наиболее точно) измеряется в экспериментах.

Зависимость (40) вызывает много вопросов, но главный вопрос – почему образующиеся в экспериментах нанокристаллы имеют малодефектную устойчивую кристаллическую структуру [25]? Ведь согласно критерию (40) нанокристаллы должны быть заметнее (чем макрокристалл) активированы вакансиями [21-23], что должно вести к неустойчивости их структуры.

Представленные на рис. 6 результаты дают ясный ответ на поставленный вопрос: малый нанокристал при низких давлениях и низких температурах содержит меньше вакансий на атом, чем макрокристалл, но при изобарическом росте температуры зависимость меняется, и при низких давлениях и высоких температурах нанокристалл активирован вакансиями больше, чем макрокристалл. Причем, как видно из левого графика рис. 6, при P = 1 бар должна существовать определенная температура: 300 K < T_{nv} < 1000 K, при которой функция $\phi_v(N)$ будет независимой от *N*. Из рис. 6 следует, что с ростом давления величина T_{nv} растет, и при 100 кбар имеем: $T_{nv} > 1000$ K.

Рис. 7. Изоморфные изотермо-изобарические зависимости вероятности делокализации атома от числа атомов в кубическом нанокристалле ОЦК-Fe.

Расчеты показали, что изоморфно-изотермические зависимости вероятности делокализации атома (x_d) и коэффициента самодиффузии $(D_f \sim x_d)$ монотонно убывают с ростом давления. На рис. 7 показаны изоморфно-изотермические зависимости для x_d – вероятности делокализации атома от числа атомов в кубическом нанокристалле ОЦК-Fe. Как видно из рис. 7, при уменьшении размера нанокристалла доля атомов в делокализованном состоянии возрастает при любом давлении и температуре. Это

Рис. 8. Изоморфные изотермо-изобарические зависимости отношения вероятности образования вакансии к вероятности делокализации атома от числа атомов в кубическом нанокристалле Fe.

На рис. 8 показаны изоморфно-изотермические зависимости для функции ϕ_v/x_d – отношения вероятности образования вакансии к вероятности делокализации атома от числа атомов в кубическом нанокристалле ОЦК-Fe. Как было показано в работах [7, 13, 14, 28] для макрокристалла простого вещества со структурой, где $k_p > 0.6$, всегда соблюдается неравенство: $\phi_v/x_d > 1$, т.е. число вакантных узлов всегда больше числа делокализованных атомов в решетке. Из рис. 8 видно, что для нанокристалла это неравенство может нарушаться. При некотором размере (N_{sd}), возрастающем с ростом температуры ($N_{sd} = 19-21$ при T = 300 K, и $N_{sd} = 37-49$ при T = 1000 K), наблюдается вневакансионная самодиффузия [7, 28], при которой число диффундирующих атомов становится больше числа вакантных узлов в решетке нанокристалла: $x_d > \phi_v$. Легко понять, что вневакансионная самодиффузия есть следствие усиления роли поверхностных эффектов над объемными.

ЗАКЛЮЧЕНИЕ

На основе обобщенной RP(vac)-модели нанокристалла получено выражение для свободной энергии Гельмгольца и рассчитано уравнение состояния для нанокристалла, в котором имеются как вакансии в решетке, так и делокализованные (диффундирующие) атомы. Расчеты зависимости $P(v/v_0, T)$ для нанокристалла ОЦК железа показали, что давление при изотермо-изомерном сжатии нанокристалла растет меньше, чем для макрокристалла. Это указывает на уменьшение модуля упругости при изотермо-изобарическом уменьшении размера нанокристалла.

При определенном значении относительного объема $(v/v_0)_0$ зависимости $P(v/v_0)$ для нанокристалла и макрокристалла пересекаются. Это указывает на то, что при $(v/v_0)_0$

21

поверхностное давление $(P_{sf}(v) = P(v)_{macro} - P(v)_{nano})$ становится равным нулю $(P_{sf}(v/v_o)_0 = 0)$. При $v/v_o < (v/v_o)_0$ поверхностное давление сжимает нанокристалл $(P_{sf} > 0)$, а при $v/v_o > (v/v_o)_0$ поверхностное давление нанокристалл растягивает $(P_{sf} < 0)$. Причем, при низком давлении увеличение c/r_o при изоморфно-изотермическом уменьшении размера происходит тем заметнее, чем выше температура, а при высоком давлении размерное сжатие происходит заметнее, чем ниже температура на изотермы.

Отметим, что существование поверхностного давления для нанокристалла доказано также и методом молекулярной динамики в работе [29], где также было указано на возможность перехода поверхностного давления нанокристалла в отрицательную область.

Величина $(v/v_0)_0$ уменьшается при изоморфно-изомерном росте температуры, а также при изоморфно-изотермическом уменьшении N, или при изомерно-изотермическом отклонении формы нанокристалла от наиболее оптимальной формы (для RP(vac)-модели – от формы куба).

На примере ОЦК железа показано, что при определенных *P*-*T*-условиях удельная поверхностная энергия не зависит от размера нанокристалла. При $T \leq 300$ К на изотермах зависимости $\sigma(P)$ имеются две *P*-точки, где $\sigma(N) = \sigma(\infty)$. С ростом температуры эти *P*-точки сближаются, и при $T \geq 1000$ К таких *P*-точек на изотермах уже нет.

При P = 1 бар функция $\phi_v(N)$ растет с ростом числа атомов (N) при температуре 300 К, и функция $\phi_v(N)$ уменьшается с ростом N вдоль изотермы 1000 К. То есть при P = 1 бар и T = 300 К нанокристалл содержит меньше вакансий на атом, чем макрокристалл. Но при P = 1 бар и T = 1000 К уменьшение N ведет к росту вероятности образования вакансии. При изотермо-изобарическом росте нанокристалла при давлении 100 кбар функция $\phi_v(N)$ растет с ростом N как при 300 К, так и при 1000 К. Т.е. нанокристалл при 100 кбар содержит меньше вакансий на атом, чем макрокристалл и при 300 К, и при 1000 К. Поэтому при P = 1 бар должна существовать определенная температура (300 К $< T_{nv} <$ 1000 К), при которой функция $\phi_v(N)$ будет независимой от N. С ростом давления величина T_{nv} растет, и при P = 100 кбар получено, что $T_{nv} > 1000$ К.

При уменьшении размера нанокристалла вероятность делокализации атома *x*_d (как и коэффициент самодиффузии) возрастает при любом давлении и температуре.

При изотермо-изобарическом уменьшении размера нанокристалла отношение ϕ_v/x_d уменьшается тем заметнее, чем ниже температура. При некотором размере (N_{sd}) наблюдается вневакансионная самодиффузия, при которой число делокализованных атомов больше числа вакантных узлов в решетке нанокристалла ($x_d > \phi_v$). Величина N_{sd} возрастает с ростом температуры: $N_{sd} = 19 - 21$ при 300 K, и $N_{sd} = 37 - 49$ при 1000 K.

22

Как показано в работах [6, 7, 19], при отклонении формы нанокристалла от наиболее оптимальной формы, размерные зависимости решеточных свойств нанокристалла усиливаются. Поэтому полученные здесь размерные зависимости для нанокристалла с кубической формой (f = 1) являются минимальными: при отклонении (в любую сторону) параметра формы от единицы ($f \neq 1$) размерные зависимости представленных здесь свойств будут усиливаться.

ЛИТЕРАТУРА

- Li Z.H., Truhlar D.G. Nanothermodynamics of Metal Nanoparticles // Chemical Science.
 2014. V. 5. № 7. P. 2605 2624.
- Chamberlin R.V. The Big World of Nanothermodynamics // Entropy. 2015. V. 17. № 1. P. 52 73.
- Marks L.D., Peng L. Nanoparticle Shape, Thermodynamics and Kinetics // Journal of Physics: Condensed Matter. 2016. V. 28. № 5. Article number 053001.
- 4. Ландау Л.Д., Лифшиц Е.М. Статистическая физика. Часть 1. М.: Наука, 1976. 584 с.
- 5. *Мелвин-Хьюз* Э.А. Физическая химия. В 2-х томах. М.: Изд-во Иностранной Литературы, 1962. 1148 с.
- 6. *Магомедов М.Н.* О зависимости поверхностной энергии от размера и формы нанокристалла // Физика Твердого Тела. 2004. Т. 46. № 5. С. 924 937.
- 7. *Магомедов М.Н.* Изучение межатомного взаимодействия, образования вакансий и самодиффузии в кристаллах. М.: Физматлит, 2010. 544 с.
- 8. *Магомедов М.Н.* О поверхностном давлении для ограненного нанокристалла // Письма в Журнал Технической Физики. 2005. Т. 31. № 1. С. 24 33.
- 9. *Магомедов М.Н.* О новом «поверхностном» критерии плавления // Журнал Технической Физики. 2013. Т. 83. № 6. С. 155 158.
- 10. *Магомедов М.Н.* О поверхностном давлении для нанокристалла // Российские Нанотехнологии. 2014. Т. 9. № 5-6. С. 63 72.
- 11. *Магомедов М.Н.* О параметрах образования вакансий в кристаллах подгруппы углерода // Физика и Техника Полупроводников. 2008. Т. 42. № 10. С. 1153 1164.
- 12. *Магомедов М.Н.* Об уравнении состояния простого вещества, описывающем трехфазное равновесие // Вестник Московского государственного технического университета им. Н.Э. Баумана. Серия: Естественные науки. 2013. № 2. С. 28 42.
- 13. *Магомедов М.Н.* О самодиффузии в железе при сильном сжатии кристалла // Физика Металлов и Металловедение. 2013. Т. 114. № 3. С. 227 236.

- 14. *Магомедов М.Н.* О параметрах самодиффузии в кристаллах подгруппы углерода // Физика и Техника Полупроводников. 2010. Т. 44. № 3. С. 289 301.
- 15. Гирифельдер Дж., Кертисс Ч., Берд Р. Молекулярная теория газов и жидкостей. М.: Изд-во Иностранной Литературы, 1961. 931 с.
- 16. Жирифалько Л. Статистическая физика твердого тела. М.: Мир, 1975. 383 с.
- 17. *Магомедов М.Н.* Об определении температуры Дебая из экспериментальных данных // Физика Твердого Тела. 2003. Т. 45. № 1. С. 33 36.
- 18. *Магомедов М.Н.* Изменение теплофизических свойств ОЦК-железа при изотермическом сжатии // Журнал Технической Физики. 2015. Т. 85. № 11. С. 48 54.
- 19. *Магомедов М.Н.* О зависимости термоупругих свойств от размера и формы нанокристалла железа // Российские Нанотехнологии. 2015. Т. 10. № 1-2. С. 76 83.
- 20. Sharma G., Kumar M. Effect of Size with Freedom of Pressure and Temperature for Nanomaterials // Indian Journal of Pure & Applied Physics. 2016. V. 54. № 4. P. 251 258.
- 21. *Yang C.C., Li S.* Investigation of Cohesive Energy Effects on Size-Dependent Physical and Chemical Properties of Nanocrystals // Phys. Review B. 2007. V. 75. N 16. P. 165413 (1-5).
- Shandiz M.A. Effective Coordination Number Model for the Size Dependency of Physical Properties of Nanocrystals // Journal of Physics: Condensed Matter. 2008. V. 20. № 32. P. 325237 (1-9).
- 23. Guisbiers G. Schottky Defects in Nanoparticles // The Journal of Physical Chemistry C.
 2011. V. 115. № 6. P. 2616 2621.
- Yu X., Zhan Z. The Effects of the Size of Nanocrystalline Materials on their Thermodynamic and Mechanical Properties // Nanoscale Research Letters. 2014. V. 9. № 1. P. 1 – 6.
- 25. Звонарева Т.Н., Ситникова А.А., Фролова Г.С., Иванов-Омский В.И. Нанокластеры платины инкапсулированные в аморфный углерод // Физика и Техника Полупроводников. 2008. Т. 42. № 3. С. 331 – 335.
- 26. Jiang Q., Zhang S.H., Li J.C. Grain Size-Dependent Diffusion Activation Energy in Nanomaterials // Solid State Communications. 2004. V. 130. № . P. 581–584.
- 27. Xiong G., Clark J.N., Nicklin C., Rawle J., Robinson I.K. Atomic Diffusion within Individual Gold Nanocrystal. // Scientific Reports. 2014. V. 4. Article number 6765.
- 28. *Магомедов М.Н.* О роли вакансий в процессе самодиффузии при низких температурах // Письма в Журнал Технической Физики. 2002. Т. 28. № 10. С. 64 – 71.

Данные результаты опубликованы нами в работах [1, 2, 4] из списка научных публикаций по теме за отчетный период 1918 года.

2. Метод расчёта температуры Дебая, параметров Грюнайзена и фазовой диаграммы для бинарного сплава замещения

ВВЕДЕНИЕ

На сегодняшний день нет единого мнения о том, как рассчитать температуру Дебая (Θ) для сплава бинарного состава $A_{1-C}B_C$ по параметрам чистых компонентов. Поэтому используют различные процедуры усреднения. Чаще всего используется выражение среднего арифметического по концентрации [1], т.е.

$$\Theta(A_{1-C}B_C) = (1-C)\Theta_A + C\Theta_B = \Theta_A + C(\Theta_B - \Theta_A), \qquad (1)$$

где Θ_A – температура Дебая кристалла растворителя, Θ_B – температура Дебая кристалла растворенного элемента, *C* – атомная концентрация растворенного элемента.

Вместе с тем, как было экспериментально показано [2], зависимость $\Theta(C)$ в общем случае имеет нелинейный характер. Известно, что температура Дебая зависит от плотности, а плотность в подавляющем большинстве твердых сплавов меняется с концентрацией нелинейно. Возникает вопрос – как будет зависеть температура Дебая от концентрации бинарного сплава, если его параметр решетки меняется с концентрацией нелинейно? Для ответа на поставленный вопрос рассмотрим сплав двух изоструктурных веществ А и В и используем приближение «взаимодействия только ближайших соседей», которое также называют «квазихимическим» приближением [3]. При изучении бинарной смеси $A_{1-C}B_{C}$ сначала необходимо определить закон парного межатомного взаимодействия как однородных атомов (А-А и В-В), так разных атомов: А-В.

МЕЖАТОМНЫЙ ПОТЕНЦИАЛ ДЛЯ БИНАРНОГО СПЛАВА

Представим парное межатомное взаимодействие в виде четырех параметрического потенциала Ми–Леннард–Джонса, имеющего вид [4]:

$$\varphi(r) = \frac{D}{(b-a)} \left[a \left(\frac{r_{\rm o}}{r} \right)^b - b \left(\frac{r_{\rm o}}{r} \right)^a \right],\tag{2}$$

где D и $r_{\rm o}$ – глубина и координата минимума потенциала, b > a > 1 – параметры.

Вопрос о том, как из параметров потенциала (2) для чистых компонентов получить параметры межатомного потенциала для пары разнородных атомов до сих пор не решен. Поэтому во многих работах используются правила комбинирования Лоренца-Бертло (Lorentz-Berthelot combining rules), в которых для получения r_0 и *D* для разных атомов используется среднее арифметическое и среднее геометрическое от соответствующих параметров чистых веществ [4, стр. 149, 185, 447]:

$$r_{\text{oAB}} = (r_{\text{oA}} + r_{\text{oB}})/2$$
, (3)

$$D_{\rm AB} = (D_{\rm A} \, D_{\rm B})^{1/2} \,. \tag{4}$$

Что касается степенных параметров потенциала (2), то для них до сих пор нет единого мнения по процедуре усреднения как для *a*, так и для *b*. Поэтому для простоты берут среднее арифметическое от соответствующих значений для чистых веществ.

Выражения (3) и (4) первоначально были предложены для изучения смеси химически не взаимодействующих газов: (3) было предложено Н.А. Lorentz в 1881 году, а (4) ввел Daniel Berthelot в 1898 году. Выражение (3) противоречит правилу аддитивности молярных объемов, и не учитывает того факта, что в большинстве твердых сплавов параметр решетки меняется с концентрацией нелинейно, т.е. наблюдается отклонение от правила Вегарда (Vegard's law). [5, 6]. Формула (4) также ничем не обоснована. Но, несмотря на это, выражения (3) и (4) до сих пор используются для расчета свойств бинарных смесей газов, жидкостей и твердых сплавов различной природы.

Для усреднения параметров потенциала (2) мы используем процедуру, которая учитывает отклонение параметра решетки сплава от правила Вегарда. Пусть P_A и P_B это вероятности нахождения в узле смешанной решетки атома сорта A и B, соответственно. Тогда для вероятности одновременного нахождения в соседних узлах решетки атомов одного сорта и атомов разных сортов можно принять: $P_{AA} = P_A^2$, $P_{BB} = P_B^2$ и $P_{AB} = 2P_A P_B$. Число парных связей для пар атомов одного сорта и для пар разных атомов равно [3]:

$$N_{\rm AA} = (k_n/2)N P_{\rm A}^2$$
, $N_{\rm BB} = (k_n/2)N P_{\rm B}^2$, $N_{\rm AB} = k_n N P_{\rm A} P_{\rm B}$,

где $N = N_A + N_B$ – общее число атомов в сплаве, k_n – первое координационное число, т.е. число ближайших к данному атому узлов решетки.

Тогда, учитывая, что общее число парных связей в сплаве равно: $NN = (k_n/2)N$, для среднего значения какого-либо *H*-параметра межатомного потенциала (2) сплава можно получить выражение:

$$H(A_{1-C}B_C) = P_A^2 H_A + P_B^2 H_B + 2P_A P_B H_{AB},$$
(5)

где *H*_{AB} – параметр межатомного потенциала (2) для решетки с равным числом однородно распределенных по решетке атомов обеих сортов, с учетом релаксации такой решетки к минимуму энергии.

Входящие в (5) функции P_A и $P_B = 1 - P_A$ определим как геометрические вероятности того, что точка, случайно поставленная на линию длинной $(1 - C)r_{oA} + Cr_{oB}$, попадет на отрезки r_{oA} или r_{oB} , соответственно:

$$P_{\rm A}(C) = \frac{(1-C)r_{\rm oA}}{(1-C)r_{\rm oA} + Cr_{\rm oB}}, \qquad P_{\rm B}(C) = \frac{Cr_{\rm oB}}{(1-C)r_{\rm oA} + Cr_{\rm oB}}.$$
 (6)

При внесении атомов одного сорта в решетку из атомов другого сорта объем общей

решетки V_{AB} релаксирует так, чтобы достигался минимум свободной энергии. Поэтому разложим удельную (на атом своей подрешетки) свободную энергию для каждой из подрешеток в ряд по степеням отклонения удельного объема: $\Delta V_i = V_{AB} - V_{i0}$, при постоянной температуре (*T*):

$$F(\mathbf{A}) = F(\mathbf{A})_{0} + \left(\frac{\partial F(\mathbf{A})}{\partial V}\right)_{T,V_{\mathbf{A}}} \Delta V_{\mathbf{A}} + \frac{1}{2} \left(\frac{\partial^{2} F(\mathbf{A})}{\partial V^{2}}\right)_{T,V_{\mathbf{A}}} (\Delta V_{\mathbf{A}})^{2}$$
$$F(\mathbf{B}) = F(\mathbf{B})_{0} + \left(\frac{\partial F(\mathbf{B})}{\partial V}\right)_{T,V_{\mathbf{B}}} \Delta V_{\mathbf{B}} + \frac{1}{2} \left(\frac{\partial^{2} F(\mathbf{B})}{\partial V^{2}}\right)_{T,V_{\mathbf{B}}} (\Delta V_{\mathbf{B}})^{2}$$

Таким образом, добавочная удельная свободная энергия решетки с равным числом атомов разного сорта будет равна:

$$\Delta F_{AB} = -P(\Delta V_{A} + \Delta V_{B}) + \frac{1}{2} \left[\frac{B_{A}}{V_{A}} (\Delta V_{A})^{2} + \frac{B_{B}}{V_{B}} (\Delta V_{B})^{2} \right],$$
(7)

где $P = -(\partial F(A)/\partial V)_T = -(\partial F(B)/\partial V)_T - давление, которое одинаково для обеих решеток, <math>B_i$ = $V_i(\partial^2 F(i)/\partial V^2)_T = -V_i(\partial P/\partial V_i)_T - изотермический модуль упругости для решетки$ *i*-го компонента.

Из условия минимума функции (7): $(\partial \Delta F_{AB}/\partial V_{AB})_{T,P} = 0$, можно получить выражение для удельного объема смешанной решетки, состоящей из равного числа атомов разных сортов (т.е. для решетки эквиатомного состава), которая находится под давлением:

$$V_{\rm AB} = \frac{V_{\rm A} + C_N V_{\rm B}}{1 + C_N} + 2 \frac{P V_{\rm A}}{B_{\rm A} (1 + C_N)},\tag{8}$$

где введена функция, учитывающая разницу в сжимаемостях чистых компонент:

$$C_N = \frac{B_{\rm B}}{B_{\rm A}} \frac{V_{\rm A}}{V_{\rm B}}$$
 (9)

Так как исходные и смешанная решетки имеют одинаковую структуру, то для параметра r_{oAB} смешанной решетки эквиатомного состава, находящейся при нулевых значениях давления и температуры (P = 0, T = 0 K) можно принять:

$$r_{\rm oAB} = \left(\frac{r_{\rm oA}^{3} + C_{N} r_{\rm oB}^{3}}{1 + C_{N}}\right)^{1/3},\tag{10}$$

где параметр, учитывающий разницу в сжимаемостях чистых компонент для смешанной решетки эквиатомного состава, будет иметь вид:

$$C_N = \frac{B_{\rm B}}{B_{\rm A}} \left(\frac{r_{\rm oA}}{r_{\rm oB}}\right)^3 \,. \tag{11}$$

Для простоты расчет параметра D_{AB} будем проводить с помощью выражения (4), а для расчета величин b_{AB} и a_{AB} используем среднее арифметическое от соответствующих

значений для чистых компонент:

$$D_{\rm AB} = (D_{\rm A}D_{\rm B})^{1/2}, \ b_{\rm AB} = (b_{\rm A} + b_{\rm B})/2, \ a_{\rm AB} = (a_{\rm A} + a_{\rm B})/2.$$
 (12)

Значение средней массы атома для сплава m(C) будем рассчитывать, как среднее гармоническое от масс составляющих сплав атомов:

$$m(C) = \left(\frac{P_{\rm A}}{m_{\rm A}} + \frac{P_{\rm B}}{m_{\rm B}}\right)^{-1}.$$
(13)

Таким образом, мы моделируем твердый раствор $A_{1-C}B_C$ из N_A и N_B атомов с разной атомной массой изоструктурным виртуальным кристаллом из $N = N_A + N_B$ одинаковых атомов, масса каждого из которых меняется с концентрацией ($C = N_B/N$) по формуле (13), а параметры парного межатомного взаимодействия меняются с C согласно соотношениям (5), (6) и (10)-(12).

МЕТОДИКА РАСЧЕТА ТЕМПЕРАТУРЫ ДЕБАЯ, ПАРАМЕТРОВ ГРЮНАЙЗЕНА И ФАЗОВОЙ ДИАГРАММЫ РАСТВОРА

Получив зависимость параметров потенциала (2) и средней масса атома от концентрации компонентов, можно рассчитать температуру Дебая для сплава по методике, предложенной в [7, 8] для однокомпонентного кристалла:

$$\Theta(m) = A_w(m) \,\xi \left[-1 + \left(1 + \frac{8D}{k_B A_w(m) \,\xi^2} \right)^{1/2} \right], \tag{14}$$

где k_B — постоянная Больцмана, функция $A_w(m)$ возникает из-за учета энергии «нулевых колебаний» атомов в кристалле:

$$A_{w}(m) = K_{R}(m) \frac{5k_{n}ab(b+1)}{144(b-a)} \left(\frac{r_{o}}{c}\right)^{b+2}, \qquad K_{R}(m) = \frac{\hbar^{2}}{k_{B}r_{o}^{2}m}, \qquad \xi = \frac{9}{k_{n}}, \quad (15)$$

где *ћ* – постоянная Планка, *с* – расстояние между центрами ближайших атомов.

Исходя из (14) и (15) можно рассчитать первый (γ), второй (q) и третий (z) параметры Грюнайзена по формулам:

$$\gamma = -\left(\frac{\partial \ln \Theta}{\partial \ln V}\right)_T = \frac{b+2}{6(1+X_w)},\tag{16}$$

$$q = \left(\frac{\partial \ln \gamma}{\partial \ln V}\right)_T = \gamma \frac{X_w (1 + 2X_w)}{(1 + X_w)} , \qquad (17)$$

$$z = -\left(\frac{\partial \ln q}{\partial \ln V}\right)_T = \gamma(1 + 4X_w) - 2q = \gamma\left(\frac{1 + 3X_w}{1 + X_w}\right) = \frac{(b+2)}{6}\frac{(1 + 3X_w)}{(1 + X_w)^2} , \qquad (18)$$

где $X_w = A_w(m)\xi/\Theta$ – величина, определяющая роль «нулевых колебаний» атомов при расчете температуры Дебая и параметров Грюнайзена.

С помощью (14) – (18) можно рассчитать, как температуру Дебая и параметры

Грюнайзена сплава: $\Theta(m)$, $\gamma(m)$, q(m), z(m), так и парциальные значения данных параметров для составляющий сплав компонентов: $\Theta(m_i)$, $\gamma(m_i)$, $q(m_i)$, $z(m_i)$, т.е. для подрешетки атомов массой m_i , в которой все параметры межатомного потенциала меняются с концентрацией по предложенным здесь формулам (5), (6) и (10)-(12).

Исходя из модели плавления Линдеманна, для температуры плавления однокомпонентного вещества было получено выражение [9]:

$$k_B T_m = \left(\frac{3}{16}\right) X_L^2 m \left(\frac{c k_B \Theta}{\hbar}\right)^2 \quad , \tag{19}$$

где $X_L = (\langle r^2 \rangle / c^2)^{1/2}$ — параметр Линдеманна, представляющий собой отношение амплитуды колебания атомов к *c* — расстоянию между центрами ближайших атомов при температуре плавления.

Известно, что при нагреве твердого раствора сначала плавится подрешетка более легкоплавкого компонента B, а при охлаждении жидкого сплава сперва кристаллизуется подрешетка более тугоплавкого компонента A. Исходя из этого и формулы (19) для T_s – температуры солидуса (для плавления подрешетки более легкоплавкого компонента B) и T_l – температуры ликвидуса (для кристаллизации более тугоплавкого компонента A) можно принять выражения следующего вида:

$$T_{s}(C) = T_{m}(\mathbf{B})P_{\mathbf{B}}(C)\frac{m(C)}{m_{\mathbf{B}}}\left[\frac{c(C)\Theta(m)}{c_{\mathbf{B}}\Theta(m_{\mathbf{B}})}\right]^{2}\left[\frac{X_{L\mathbf{B}}}{X_{L}(C)}\right]^{2} + T_{m}(\mathbf{A})P_{\mathbf{A}}(C), \qquad (20)$$

$$T_{l}(C) = T_{m}(A)P_{A}(C)\frac{m(C)}{m_{A}}\left[\frac{c(C)\Theta(m)}{c_{A}\Theta(m_{A})}\right]^{2}\left[\frac{X_{LA}}{X_{L}(C)}\right]^{2} + T_{m}(B)P_{B}(C).$$
(21)

Здесь $T_m(i)$ – температура плавления чистой решетки для *i*-го компонента, $c(C)/c_i$ – отношение расстояний между центрами ближайших атомов в решетке раствора и в чистой решетке *i*-го компонента, $\Theta(m)/\Theta(m_i)$ – отношение температуры Дебая в решетке раствора и парциальной температуры Дебая для подрешетки *i*-го компонента, $X_L(C)/X_{Li}$ – отношение параметров Линдеманна в решетке раствора и в чистой решетке *i*-го компонента.

Отметим, что на сегодняшний день в литературе нет выражений типа (20) и (21), позволяющих рассчитать функции $T_s(C)$ и $T_l(C)$ по параметрам парного межатомного потенциала чистых компонент.

РЕЗУЛЬТАТЫ РАСЧЕТА ДЛЯ ТВЕРДОГО РАСТВОРА SIGE

Для расчетов был выбран сплав замещения SiGe, который на всем интервале концентрации имеет структуру алмаза: $k_n = 4$. Параметры парного межатомного потенциала (2) для чистых кристаллов Si и Ge были определены в [8, 10] и представлены в

таблице 1. Там же показаны экспериментальные значения модуля упругости из [11] и температуры плавления из [12], а также рассчитанные в [13] значения параметра Линдеманна для кремния и германия.

Таблица 1. Параметры межатомного потенциала (2) определенные в [8, 10], экспериментальные значения модуля упругости из [11] и температуры плавления из [12], и рассчитанные в [13] значения параметра Линдеманна. В колонке для D/k_B в первой строке показано значение D_b/k_B , а во второй строке D_s/k_B

Вещество	<i>m</i> amu	r_0 10 ⁻¹⁰ m	D/k _B K	b	a	B [10, 11] GPa	<i>T_m</i> [12] K	<i>X</i> _L [13]
Si	28.09	2.351	64286.16 26921.28	4.0	2.48	97.7	1687.15	0.136 ± 0.015
Ge	72.59	2.450	46764.12 22511.76	4.3	2.75	74.9	1211.45	0.1245 ± 0.015

Как было показано в [8, 10, 14], значение глубины потенциальной ямы для ковалентных кристаллов можно определить двумя путями: из модуля упругости (B_0) и из удельной энергии атомизации (L_0) кристалла при T = 0 К и P = 0:

$$D_b = \frac{18B_0 V_0}{k_n a b N} = D_s + \Delta D$$
, $D_s = \frac{L_0}{k_n / 2}$.

Для металлов эти две формулы дают одинаковый результат, а для ковалентных кристаллов глубина межатомного потенциала, восстановленная из модуля упругости (D_b) приблизительно в два раза больше той величины, что следует из энергии атомизации кристалла (D_s). Причем, разница: $\Delta D = D_b - D_s$, для кристаллов из элементов подгруппы углерода (алмаз, Si, Ge, α-Sn, Pb) уменьшается с ростом массы атома *m*, и для свинца становится равной нулю: $\Delta D(Pb) = 0$. Энергия всей межатомной связи (D_b) проявляется при упругой (обратимой) деформации, а энергия «слабой» связи (D_s) проявляется при пластической (необратимой) деформации ковалентного кристалла. Из значения D_b необходимо рассчитывать такие параметры, при измерении которых не происходит разрыва межатомных связей: скорость звука, температура Дебая, коэффициент теплового расширения. При пластической (необратимой) деформации ковалентного кристалла – рвутся только «слабые» звенья связи, и глубина потенциала (2) определяется величиной D_s . Поэтому из величины D_s определяются такие (связанные с разрывом межатомных связей) параметры, как энергия сублимации, энергия активационных процессов (образования вакансий и самодиффузии), и удельная поверхностная энергия. Оба эти значения глубины потенциала (2) представлены в табл. 1: в первой строке D_b – для упругой (обратимой) деформации, а во второй D_s – для пластической (необратимой) деформации ковалентных кристаллов кремния и германия.

Рис. 1. Сверху показана зависимость величины c(C) от концентрации сплава SiGe. На нижнем графике показана разность $c(C) - r_0 \operatorname{Vegard}(C)$. Точки и сплошная кривая – это экспериментальные данные, точечная линия – это результат наших расчетов.

Используя указанные в табл. 1 параметры потенциала «упругого» типа (т.е. с глубиной D_b), из выражений (10)-(12) получим значения, определяющие изменение параметров межатомного потенциала (2) с концентрацией Ge для сплава Si_{1-C}Ge_C:

$$C_N = 0.677024$$
, $r_{\text{oSiGe}} = 2.39196 \cdot 10^{-10} \text{ m}$, $D_{\text{SiGe}}/k_B = (D_{\text{Si}}D_{\text{Ge}})^{1/2}/k_B = 54829.61 \text{ K}$,
 $b_{\text{SiGe}} = (b_{\text{Si}} + b_{\text{Ge}})/2 = 4.15$, $a_{\text{SiGe}} = (a_{\text{Si}} + a_{\text{Ge}})/2 = 2.615$.

На рис. 1 вверху показана экспериментальная зависимость для c(C) – расстояния между центрами ближайших атомов и для рассчитанного нами значение $r_0(C)$ – параметра координаты минимума парного потенциала (2) для сплава Si_{1-C}Ge_C. Верхняя пунктирная прямая – расчет по правилу Вегарда:

$$r_{\rm o \, Vegard} / [10^{-10} \, {\rm m}] = 2.351(1 - C) + 2.45 \cdot C.$$
 (22)

Сплошная кривая – это экспериментальная зависимость из [5]:

$$c_{\text{exper}} / [10^{-10} \text{ m}] = 2.35205 + 0.08661 \cdot C + 0.0112 \cdot C^2$$
. (23)

Эта зависимость определена из экспериментальных данных для параметра решетки (l), который для структуры алмаза связан с кратчайшим межатомным расстоянием соотношением: $c = (3^{1/2}/4) l = 0.4330127 l$.

Нижняя точечная кривая, которая практически сливается с зависимостью (23), это результат наших расчетов для $r_0(C)$.

На рис. 1 внизу показана зависимость разности $c(C) - r_{oVegard}(C)$ от концентрации Ge: точки и сплошная кривая – это экспериментальные данные из [5] и разность между зависимостями (22) и (23); точечная линия – это результат наших расчетов. Из рис. 1 видно, что наша зависимость достаточно хорошо согласуются с экспериментальными данными, которые получены в [5] при T = 300 K с точностью ± 0.0005 [10⁻¹⁰ m]. Это позволяет утверждать, что отклонение от правила Вегарда обусловлено не только различной сжимаемостью решеток чистых компонент сплава (как это утверждалось в [5, 6]), но и разным размером атомов, который определяет геометрические вероятности обнаружить атом в сплаве (6).

Отметим, что расчеты методом функционала плотности, проведенные в работе [6], показали плохое согласие с экспериментальными данными из [5]. Значение $|\Delta c(C)|$ в точке |максимума, т.е. при C(Ge) = 0.5 в [6] получилось очень большим: $\Delta c(C=0.5) = -$ 0.039, в то время как в [5] было получено: $\Delta c(C=0.5) = -$ 0.00299 ± 0.0005, а в наших расчетах: $\Delta r_0(C=0.5) = -$ 0.00324 [10⁻¹⁰ m].

На рис. 2 показаны концентрационные зависимости для (сверху вниз): температуры Дебая, первого, второго и третьего параметров Грюнайзена сплава SiGe. Расчет выполнен по формулам (14)-(18) при использовании потенциала «упругого» типа (т.е. с D_b) и при $c = r_o$, т.е. при P = 0 и T = 0 К.

На всех четырех графиках рис. 2 сплошной центральной кривой показана рассчитанная нами зависимость для общего параметра. Точечные линии – это результат расчета парциальных значений параметра для виртуальной подрешетки с массой атома одного из компонент, но межатомное взаимодействие между атомами в которой описывается межатомным парным потенциалом (2) с параметрами зависящими от концентрации компонентов. На рис. 2 символом элемента указано, что данная зависимость относится к подрешетке данного компонента. На верхнем графике пунктирной прямой, лежащей рядом с зависимостью $\Theta(m)$, показана зависимость, рассчитанная как среднее арифметическое по концентрации от температур Дебая вычисленных для чистых кристаллов:

$$\Theta/[K] = 850.185(1 - C) + 482.222 \cdot C.$$
(24)

Рис. 2. Концентрационные зависимости для (сверху вниз): температуры Дебая, первого, второго и третьего параметров Грюнайзена сплава SiGe. Сплошной центральной кривой показана рассчитанная нами зависимость для общего параметра, точечными линиями показаны зависимости для парциальных параметров.

Из рис. 2 видно, что зависимости общей температуры Дебая $\Theta(m)$ параметров И Грюнайзена от концентрации германия нелинейные. Это обусловлено нелинейной как зависимостью параметра $r_0(C)$ (см. рис. 1), так и нелинейной зависимостью других трех параметров парного потенциала (2) от концентрации Ge.

Отметим, что при использовании потенциала «пластичного» типа (т.е. с глубиной D_s , которая приведена в нижних строках табл. 1), форма графиков будет аналогична тем, что показаны на рис. 2, но численные значения параметров В 2 изменятся. таблице представлены рассчитанные по (14)-(18)формулам значения температуры Дебая и параметров Грюнайзена при разной величине глубины межатомного потенциала для чистых В первой кристаллов. строке показаны значения полученные

при D_b , т.е. для потенциала «упругого» типа, а во второй строке – при D_s , т.е. для потенциала «пластичного» типа. Общие значения параметров рассчитаны для чистого кристалла. Эти значения соответствуют точкам на графиках рис. 2, где соединяются сплошная и пунктирная линии на вертикальной оси. Парциальные значения параметров (вида $H(m_i)$) рассчитаны для чистого кристалла *j*-го компонента со значением массы атома *i*-го компонента. Эти парциальные значения соответствуют точкам на графиках рис. 2, где пунктирная линии для чистого кристалла *j*-го компонента со значением массы атома *i*-го компонента. Эти парциальные значения соответствуют точкам на графиках рис. 2, где пунктирная линия для *i*-го компонента достигает вертикальной оси, т.е. при 100 % концентрации *j*-го компонента. В правых столбцах таблицы 2 показаны области разброса экспериментальных значений для температуры Дебая из обзора [8, стр. 92] и для первого параметра Грюнайзена из [15] при P = 0 и T = 300 К. Легко видеть, что экспериментальные значения для чистых кристаллов укладываются в интервал между значениями Θ и γ , рассчитанными при D_b и при D_s .

Таблица 2. Рассчитанные значения температуры Дебая и параметров Грюнайзена при разной величине глубины межатомного потенциала для чистых кристаллов. В первой строке показаны значения, полученные при D_b , т.е. для потенциала «упругого» типа, а во второй строке – при D_s , т.е. для потенциала «пластичного» типа. В двух правых столбцах показаны области разброса экспериментальных значений для температуры Дебая из [8] и параметра Грюнайзена из [15]

Крис-	Θ	$\Theta(m_i)$	γ	$\gamma(m_i)$	$q \cdot 10^{3}$	$q(m_i) \cdot 10^3$	z	$z(m_i)$	Θ _{exper} [8]	γ _{exper} [15]
талл	K	K							K	
Si	850.185	773.823	0.9963	1.0451	3.747	4.932	1.0037	1.0549	638 –	1.00 ± 0.03
	549.058	535.789	0.9942	1.0429	5.802	7.124	1.0057	1.0570	648.8	
Ge	482.222	529.619	1.0470	0.9977	3.063	2.328	1.0530	1.0023	373.3 –	1.05 ± 0.02
	334.147	342.297	1.0456	0.9964	4.420	3.602	1.0544	1.0036	374	1.03 ± 0.03

К сожалению, в литературе нет экспериментальных концентрационных зависимостей для температуры Дебая и параметров Грюнайзена для твердого раствора SiGe. Поэтому представленные на рис. 2 рассчитанные результаты сравнивать не с чем. Но фазовая диаграмма, (т.е. концентрационные зависимости для температуры солидуса и ликвидуса) сплава SiGe, экспериментально изучена очень хорошо многими авторами и в общепринятом виде представлена в обзоре [12].

На рис. З показаны концентрационные зависимости для температуры солидуса и ликвидуса сплава SiGe, рассчитанные при использовании потенциала «упругого» типа. Заметим, что при переходе к потенциалу «пластичного» типа фазовая диаграмма практически не изменится. Это связано с тем, что входящее в формулы (20) и (21) отношение температуры Дебая в решетке раствора к парциальной температуре Дебая для подрешетки *i*-го компонента: $\Theta(m)/\Theta(m_i)$, для сплава SiGe не изменяются, ввиду малости энергии «нулевых колебаний» по сравнению с глубиной межатомной связи для Si и Ge:

34

$$\frac{k_B A_w(m)\xi^2}{8D} \ll 1, \qquad \Theta(m) \cong \left[\frac{8A_w(m)D}{k_B}\right]^{1/2}.$$
(25)

Сплошными кривыми на рис. 3 показаны экспериментальные зависимости из [12], имеющие следующий вид:

 $T_{s}/[K] = 1685.36071 - 728.64808 C + 256.08582 C^{2}, R_{cor} = 0.9997,$ $T_{t}/[K] = 1692.57829 - 342.4064 C + 343.75438 C^{2} - 474.08838 C^{3}, R_{cor} = 0.99814.$

Данные зависимости получены путем аппроксимации экспериментальных данных из [12] указанными полиномами с коэффициентом достоверности *R*_{cor}.

Рис. 3. Фазовая диаграмма сплава SiGe. Верхние выпуклые кривые – концентрационные зависимости для температуры ликвидуса, нижние вогнутые линии – концентрационные зависимости для температуры солидуса. Сплошные кривые – экспериментальные зависимости из [12], точечные линии – расчётные зависимости. Пунктирная прямая – расчет по формуле (26).

Пунктирные кривые получены из формул (20) и (21) для подрешеток германия – нижняя вогнутая кривая: T_s (Ge), и кремния – верхняя выпуклая кривая: T_l (Si), при использовании данных из табл. 1. При этом для концентрационной зависимости параметра Линдеманна, в соответствии результатами [13], использовалась формула вида: $X_L(C) = 0.136 P_{Si} + 0.1245 P_{Ge}$, откуда следует:

$$X_L(C)/X_{L\,\text{Si}} = P_{\text{Si}} + 0.91544 P_{\text{Ge}}, \qquad X_L(C)/X_{L\,\text{Ge}} = P_{\text{Ge}} + 1.09237 P_{\text{Si}}.$$

Пунктирной прямой на рис. 3 показана зависимость, рассчитанная как среднее арифметическое по концентрации от температур плавления чистых решеток Si и Ge:

$$T_m(C)/[K] = 1211.45 C + 1687.15(1 - C)$$
. (26)

Как видно из рис. 3 согласие рассчитанной фазовой диаграммы с экспериментальной вполне хорошее, что говорит о корректности как метода усреднения параметров парного

межатомного потенциала, так и метода расчета общей и парциальной температуры Дебая и формул (20), (21).

В заключение отметим, что полученные результаты можно использовать во многих прикладных задачах. Например, используя зависимость для параметров парного межатомного взаимодействия от концентрации (соотношениям (5), (6) и (10)-(12)) и зависимость для m(C) в виде (13), можно с помощью методики из [14] рассчитывать изменение решеточных свойств твердого раствора с ростом давления.

ОБ ИЗМЕНЕНИИ ФАЗОВОЙ ДИАГРАММЫ ПРИ УМЕНЬШЕНИИ РАЗМЕРА НАНОКРИСТАЛЛА

Методику также можно использовать для изучения эволюции фазовой диаграммы сплава замещения при уменьшении размера системы. Известно [8, 16], что при уменьшении размера кристалла (или числа атомов N) уменьшается среднее (по нанокристаллу) координационное число $k_n(N)$, причем уменьшение будет тем больше, чем заметнее форма нанокристалла отклонена от наиболее энергетически оптимальной формы (для RP-модели это куб). Это уменьшение $k_n(N)$, согласно (14) или (25), ведет к уменьшению температуры Дебая: $\Theta(N) \sim k_n(N)^{1/2}$, и, согласно (19), приводит к уменьшению температуры плавления: $T_m(N) \sim \Theta(N)^2 \sim k_n(N)$. Применительно к нанокристаллу твердого раствора замещения это приведет к тому, что в формулах (20) и (21) с уменьшением размера будут уменьшаться только значения T_{mA} и T_{mB} . Из этого следует, что разность между температурой ликвидуса и солидуса нанокристалла раствора будет уменьшаться при уменьшении его размера (т.е. числа атомов в нем) согласно зависимости:

$$\Delta T_{ls}(C, N) = T_l(C, N) - T_s(C, N) = k_n(N) \Delta T_{ls}(C, N = \infty).$$
(27)

Этот вывод о понижении значений T_{mA} , T_{mB} и ΔT_{ls} при уменьшении размера нанокристалла согласуется с результатами, полученными более сложным методами для сплавов замещения SiGe в [17] и NiCu в [18, 19].

Отметим, что как было показано в [8, 16] на примере RP-модели, при отклонении формы нанокристалла от наиболее оптимальной формы (для RP-модели это форма куба) функция $k_n(N)$ уменьшается с уменьшением N сильнее. Поэтому при переходе к менее энергетически стабильным формам нанокристалла (стержневидные или пластинчатые) значения T_{mA} , T_{mB} и ΔT_{ls} будут уменьшаться с уменьшением числа атомов N более заметнее.

С другой стороны, как было показано в работах [20, 21] на примере чистых металлов и кремния, при некотором значении числа атомов (*N*₀) теплота фазового перехода

кристалл-жидкость (ФПК-Ж) исчезает: $h(N_0) = 0$. В кластере такого (N_0) размера ФПК-Ж уже невозможен. Из этого понятно, что для кластера из N_0 атомов (при любой концентрации компонент) классифицировать в каком фазовом состоянии (твердом или жидком) находится данный кластер невозможно, и для такого кластера выполняется: $\Delta T_{ls}(C, N_0) = 0$. При этом в рамках RP-модели величина N_0 увеличивается при отклонении формы нанокристалла от наиболее оптимальной формы. Это также указывает на уменьшение величины $\Delta T_{ls}(C, N)$ с уменьшением числа атомов N тем заметнее, чем более форма нанокристалла отклонена от наиболее оптимальной формы.

ЗАКЛЮЧЕНИЕ

Разработана методика получения концентрационной зависимости параметров парного межатомного потенциала для бинарного неупорядоченного твердого раствора замещения. Методика использует геометрическую вероятность обнаружения атома в растворе (которая учитывает разницу в размерах атомов компонент раствора), и учитывает отклонение межатомного расстояния раствора от правила Вегарда. На примере сплава Si_{1-C}Ge_C показано, что отклонение зависимости $r_0(C)$ от правила Вегарда связано с различной сжимаемостью решеток чистых компонентов.

Разработана методика расчета концентрационной зависимости температуры Дебая и трех параметров Грюнайзена для бинарного сплава замещения, которая позволяет изучать как общие, так и парциальные значения данных свойств. На примере сплава SiGe показано, что изменение температуры Дебая и параметров Грюнайзена при изменении концентрации сплава происходит нелинейно.

Исходя из модели Линдеманна, получены формулы для расчета температуры солидуса и ликвидуса бинарного сплава замещения. На основе полученных зависимостей рассчитана фазовая диаграмма твердого раствора замещения SiGe, и получено достаточно хорошее согласие с экспериментальными зависимостями, как для температуры солидуса, так и для температуры ликвидуса.

Показано, что при уменьшении размера нанокристалла твердого раствора замещения разница между температурами ликвидуса и солидуса уменьшатся тем больше, чем заметнее форма нанокристалла отклонена от наиболее энергетически оптимальной формы.

37

ЛИТЕРАТУРА

- 1. База данных: http://www.ioffe.ru/SVA/NSM/Semicond/SiGe/basic.html
- 2. Swamy T. Kumara, Subhadra K.G., Sirdeshmukh D.B. X-ray diffraction studies of RbBr-RbI mixed crystals // Pramana Journal of Physics, 1994. V. 43, issue 1, pp. 33-39.
- 3. Соколовская Е.М., Гузей Л.С. Металлохимия. М.: Изд-во МГУ, 1986. 264 с.
- 4. Гирифельдер Дж., Кертисс Ч., Берд Р. Молекулярная теория газов и жидкостей: Пер. с англ. М.: Изд-во Иностранной Литературы, 1961. 931 с.
- 5. *Dismukes J.P., Ekstrom L., Paff R.J.* Lattice Parameter and Density in Germanium-Silicon Alloys // Journal of Physical Chemistry. 1964. V. 68. N 10. P. 3021–3027.
- Pulikkotil J.J., Chroneos A., Schwingenschlögl U. Structure of Sn_{1-x}Ge_x random alloys as obtained from the coherent potential approximation // Journal of Applied Physics. 2011. V. 110. N 3. P. 036105(1-5).
- 7. *Магомедов М.Н.* Об определении температуры Дебая из экспериментальных данных // Физика Твердого Тела. 2003. Т. 45. № 1. С. 33 36.
- 8. *Магомедов М.Н.* Изучение межатомного взаимодействия, образования вакансий и самодиффузии в кристаллах. М.: Физматлит, 2010. 544 с.
- Магомедов М.Н. О критерии плавления-кристаллизации и энергии активационных процессов для нанокристаллов // Журнал Технической Физики. – 2010. – Т. 80, № 9. – С. 141 – 145.
- 10. *Магомедов М.Н.* О природе ковалентной связи в кристаллах подгруппы углерода // Журнал Неорганической Химии. 2004. Т. 49. № 12. С. 2057 2067.
- Стишов С.М. Энергия, сжимаемость и ковалентность в подгруппе углерода // Письма в ЖЭТФ. – 2000. – Т. 71, № 1. – С. 25 – 27.
- 12. *Olesinski R.W., Abbaschian G.J.* The Ge-Si (germanium-silicon) system // Bulletin of Alloy Phase Diagrams. 1984, Volume 5, Issue 2, pp 180 183.
- Soma T. Pressure derivatives of the melting point for Si and Ge // J. Phys. C: Solid State Phys. 1982. V. 15. N 9. P. 1873 – 1882.
- Магомедов М.Н. Об уравнении состояния и свойствах различных полиморфных модификаций кремния и германия // Физика Твердого Тела. 2017. Т. 59. № 6. С. 1065 – 1072.
- 15. Гончаров А.Ф. Устойчивость алмаза при высоких давлениях // Успехи Физических Наук. 1987. Т. 152, № 2. С. 317 322.
- Магомедов М.Н. Зависимость упругих свойств от размера и формы нанокристаллов алмаза, кремния и германия // Журнал Технической Физики. – 2014. – Т. 84, № 11. – С. 80 – 90.

- Bajaj S., Haverty M.G., Arroyave R., Goddard W.A., Shankare S. Phase stability in nanoscale material systems: extension from bulk phase diagrams // Nanoscale. – 2015. – V. 7.
 – I. 21. – P. 9868-9877.
- Shirinyan A.S. Two-phase equilibrium states in individual Cu–Ni nanoparticles: size, depletion and hysteresis effects // Beilstein Journal of Nanotechnology. – 2015. – V. 6. – P. 1811–1820.
- Cui M.J., Lu H., Jiang H., Cao Z., Meng X. Phase Diagram of Continuous Binary Nanoalloys: Size, Shape, and Segregation Effects // Scientific Reports. 2017. V. 7. Article number: 41990. P. 1-9.
- Mei Q.S., Lu K. Melting and superheating of crystalline solids: From bulk to nanocrystals // Progress in Materials Science. – 2007. – V. 52. – I. 8. – P. 1175-1262.
- 21. *Магомедов М.Н.* О размерной зависимости параметров плавления кремния // Журнал Технической Физики. 2016. Т. 86, № 5. С. 92 95.

Данные результаты опубликованы нами в работах [3, 12] из списка научных публикаций по теме за отчетный период 1918 года.

3. Изучение исчезновения фазового перехода кристалл-жидкость при уменьшении числа атомов в системе

Ранее нами в [1] была разработана статистическая трехфазная модель простого однокомпонентного вещества, в которой часть атомов $(N - N_d)$ локализована в ячейках виртуальной решетки, а другая часть атомов (N_d) делокализована, т.е. они могут перемещаться по всему объему системы V. Виртуальная решетка состоит из N_v вакантных и N занятых ячеек.

Используя формализм RP(vac)-модели из [2], обобщим данную трехфазную модель простого вещества на случай нано-системы. Положим, что нанокристалл со свободной поверхностью имеет вид прямоугольного параллелепипеда с квадратным основанием, ограненный гранями типа (100) с геометрической поверхностью Гиббса. Ячейки (как занятые, так и вакантные) образуют кристаллическую структуру с коэффициентом упаковки k_p . Величина $f = N_{ps}/N_{po} = N_{ps}^{o}/N_{po}^{o}$ – представляет собой параметр формы, который определяется отношением числа N_{ps}^{o} атомов (или $N_{ps} = N_{ps}^{o}/(1 - \phi_v)^{1/3}$ ячеек) на боковом ребре к числу N_{po}^{o} атомов (или $N_{po} = N_{po}^{o}/(1 - \phi_v)^{1/3}$ ячеек) на ребре квадратного основания. Для стержня f > 1, для куба f = 1, для пластинчатой формы f < 1. Здесь ϕ_v – вероятность образования вакансии в решетке однокомпонентного вещества [3, 4]:

$$\phi_{\nu} = \frac{N_{\nu}}{N + N_{\nu}} = \frac{2}{\pi^{1/2}} \int_{[E_{\nu}/(k_{B}T)]^{1/2}}^{\infty} \exp(-t^{2}) \cdot dt \quad ,$$
(1)

где *k*_{*B*} – постоянная Больцмана, *E*_{*v*} – энергия создания вакантного узла в решетке.

Число ячеек и атомов в нанокристалле при данном значении *f* равно (где $\alpha = \pi/(6k_p)$):

$$N + N_{v} = f \frac{N_{po}^{3}}{\alpha} = f \frac{(N_{po}^{0})^{3}}{\alpha(1 - \phi_{v})}, \qquad \qquad N = f \frac{(N_{po}^{0})^{3}}{\alpha}$$

В рамках RP(vac)-модели зависимость среднего по наносистеме значения первого координационного числа от α , *N*, ϕ_v и *f* имеет вид [2]:

$$k_n(N,\phi_v) = k_n^{o}(\infty) \cdot (1-\phi_v) \left[1 - Z_s(f) \cdot \left(\frac{\alpha^2}{N} (1-\phi_v) \right)^{1/3} \right],$$
⁽²⁾

где $k_n^{o}(\infty)$ – первое координационное число (т.е. число ближайших к данному атому занятых или вакантных ячеек) для макрокристалла, $Z_s(f) = (1+2f)/(3f^{2/3}) - функция формы,$ которая достигает минимума равного единице при f = 1, т.е. для формы куба.

Объем системы равен сумме объемов, приходящихся на одну (занятую либо вакантную) ячейку, форму которой считаем сферической: $V = [\pi/(6k_p)](N + N_v)c^3$, где c =

 $c_0 \cdot (1 - \phi_v)^{1/3}$ – расстояние между центрами ближайших ячеек, c_0 – расстояние между центрами ближайших ячеек в безвакансионной решетке, т.е. при $N_v = 0$: $c_0 = [6 k_p V/(\pi N)]^{1/3}$.

Доля делокализованных атомов, т.е. вероятность атома иметь кинетическую энергию выше, чем *E*_d – энергии делокализации атома, равна [3, 5]:

$$x_{d} = \frac{N_{d}}{N} = \frac{2}{\pi^{1/2}} \int_{E_{d}/(k_{B}T)}^{\infty} t^{1/2} \exp(-t) \cdot dt$$
 (3)

Для «объемного» способа делокализации атома в кристалле функция E_d была определена нами ранее в [3, 5]. Но для атомов на поверхности Гиббса следует признать, что некоторая часть атомов (N_{ds}) будет делокализовываться по отличному от «объемного» способа.

В RP(vac)-модели локализованный атом колеблется в ячейке, образованной ближайшими соседями. При этом для описания колебаний локализованных атомов используется модель Эйнштейна, т.е. колебательное движение локализованного атома рассматривается как колебания трех независимых гармонических осциллятора с одинаковой частотой. Но для атома колеблющегося на поверхности Гиббса некоторые направления являются свободными для ухода атома из ячейки. Поэтому движение атома в этих направлениях следует моделировать не как движения гармонического осциллятора, а как движение делокализованного атома.

На поверхности боковой грани и грани основания из колебаний локализованного атома нужно исключить один гармонический осциллятор из трех, т.к. в этом, перпендикулярном грани, направлении делокализация будет происходить уже по иному, отличному от «объемного», способу. Для атома на боковом ребре и на ребре основания по аналогичным причинам нужно исключить два гармонических осциллятора, ибо гармонические колебания в ячейке совершает только тот осциллятор, который колеблется вдоль ребра. По этим же причинам следует считать, что атом в вершине делокализованных на поверхности Гиббса атомов некоторую часть (N_{ds}) следует считать делокализованными по отличному от «объемного» способа. В рамках RP(vac)-модели для N_{ds} получено: $N_{ds} = (2/3)(2f+1)(N_{po}^{0})^2(1-\phi_v)^{1/3}(1-x_{dv})$.

Пусть *x*_{ds} – это вероятность делокализации атома на поверхности Гиббса способом, отличным от того, каким атом делокализуется в объеме. Тогда для доли общего числа делокализованных атомов в наносистеме получим:

$$x_{d} = \frac{(N - N_{ds})x_{dv} + N_{ds}x_{ds}}{N} = (1 - \eta_{ds})x_{dv} + \eta_{ds}x_{ds},$$
(4)

где доля атомов, делокализованных на поверхности Гиббса по отличному от «объемного», более легкому способу, равна:

$$\eta_{ds} = \frac{N_{ds}}{N} = \frac{2(2f+2)}{3N} (N_{po}^{o})^2 (1-\phi_v)^{1/3} (1-x_{dv}) = 2 \frac{Z_s(f)}{(\alpha N)^{1/3}} (1-\phi_v)^{1/3} (1-x_{dv}) \quad .$$
(5)

Пусть делокализация атома со свободной поверхности Гиббса связана с переходом атома в газовую фазу и возвратом атома обратно (ибо N = const). Тогда для величины энергии делокализации атома в формуле (3) можно принять: $E_{ds} = m \langle v \rangle^2/2$, где $\langle v \rangle -$ некоторая, характерная для газовой среды, скорость атома. Если брать $\langle v \rangle$ как наиболее вероятную скорость, или как среднеквадратичную скорость атомов в газе, то можно получить: $E_{ds}/(k_BT) = 1$ (если $\langle v \rangle$ это наиболее вероятная скорость атомов) или 1.5 (если $\langle v \rangle$ это среднеквадратичная скорость атомов). Поэтому в соответствии с (3), величина x_{ds} будет равна постоянной величине: $x_{ds} = 0.392$ (если $\langle v \rangle$ это среднеквадратичная скорость атомов). Поэтому в соответствии с атомов). Поэтому для простоты можно принять: $x_{ds} = 0.5$.

Представляя парный потенциал межатомного взаимодействия функцией Ми-Леннард-Джонса: $\varphi(r) = D[a(r_0/r)^b - b(r_0/r)^a]/(b-a)$, и подставляя (3)-(6) в формализм RP(vac)-модели из [3], было получено выражение для удельной свободной энергии Гельмгольца $f_H(T, v; N, f)$, в котором учтено, как наличие вакансий в структуре, так и делокализация атомов, как в объеме, так и на поверхности Гиббса. Здесь D и r_0 – глубина и координата минимума потенциала, b > a.

Для расчетов был выбран аргон, имеющий в твердой фазе ГЦК структуру: $k_n^o = 12$, $k_p = 0.7405$. Параметры ме5жатомного потенциала были определены из данных для кристалла при P = 0 и T = 0 К в [3]:

 $r_{\rm o} = 0.37555$ nm, $D/k_B = 173.6$ K, a = 6, b = 17, $v_{\rm o} = (\pi/6k_p)r_{\rm o}^3 = 37.4522 \times 10^{-30}$ m³.

Расчеты для макросистемы (при $N_{po}^{\circ} = 10^8$, т.е. $N = 1.4 \times 10^{24}$) показали, что в области средних температур нормированное уравнение состояния:

$$Pv_0/D = - \left[\partial (f_H/D) / \partial (v/v_0) \right]_T$$

имеет две S-петли на изотерме, соответствующие фазовым переходам (ФП) кристаллжидкость (К-Ж) и жидкость-газ (Ж-Г). При высоких температурах S-петля ФП Ж-Г стягивается в критическую точку. При низких температурах две S-петли ФП К-Ж и Ж-Г сливаются в одну большую S-петлю, соответствующую ФП кристалл-газ. Таким образом, как видно из рис. 1, наша модель с единых позиций описывает все три агрегатных состояния простого вещества.

Рис. 1. Изотермы уравнения состояния в области трех фаз (слева) и в области критической точки (справа) для аргона. Символами на левом графике показаны экспериментальные значения скачка объема на бинодалях плавления. Звездочной показано экспериментальное, а кружком – расчетное положение критической точки ФП Ж-Г аргона.

Заметим, что количественное согласие наших расчетов с экспериментальными данными для плавления аргона очень плохое. Это ясно видно из рис. 1. Вместе с тем стоит напомнить, что и уравнение Ван-дер-Ваальса тоже плохо описывает линию ФП Ж-Г даже для инертных газов. Экспериментальная кривая ФП Ж-Г в приведенных координатах лежит между результатами приведенных уравнений Ван-дер-Ваальса и Бертло. Однако этот факт не мешает использовать уравнение Ван-дер-Ваальса для изучения качественных вопросов ФП Ж-Г. Поэтому представленный здесь формализм трехфазной модели мы используем для изучения качественного изменения S-петли ФП К-Ж при уменьшении

Рис. 2. Изменение изотермы 150 К уравнения состояния при уменьшении числа атомов в области ФП К-Ж.

числа атомов в наносистеме N.

Расчет изотермо-изоморфных (т.е. при постоянных значениях T и f) зависимостей уравнения состояния для ГЦК-Аг показал, что при уменьшении числа атомов S-петли ФП К-Ж и Ж-Г на изотерме уменьшаются. На рис. 2 изотермо-изоморфные (Т = показаны 150 K. 1) зависимости f нормированного давления от нормированного объема при следующих значениях числа атомов в системе: N_{po}^o $= 10^8$, t.e. $N = 1.4 \times 10^{24} = Macro -$

сплошная линия; $N_{po}^{\circ} = 20$, т.е. N = 11315 – пунктирная линия; $N_{po}^{\circ} = 8$, т.е. N = 724 – линия с коротким пунктиром; $N_{po}^{\circ} = 6$, т.е. N = 305 – точечная линия; $N_{po}^{\circ} = 2$, т.е. N = 11 – штрих-пунктирная линия.

Расчеты показали, что S-петля ФП К-Ж на изотерме T = 150 К для кубического (f = 1) нанокристалла исчезает при $N_{po}^{o} = 7$, т.е. $N_0 = 485$, а на изотерме T = 60 К – при $N_{po}^{o} = 3$, т.е. $N_0 = 38$. Величина N_0 увеличивается как с ростом температуры на изотерме, так и при отклонении формы нано-системы от наиболее энергетически оптимальной формы (для RP(vac)-модели это куб). В кластере из $N < N_0$ атомов ФП К-Ж уже нет. Такой кластер при изотермо-изоморфном увеличении удельного объема v = V/N плавно переходит в жидкую фазу.

Ранее в [6] нами, на основании более примитивной трехфазной модели было показано, что при уменьшении числа атомов в наносистеме сферической формы ФП К-Ж должен исчезать. В дальнейшем как в экспериментах [7], так и при компьютерном моделировании [8] было замечено, что с уменьшением размера нанокристалла наблюдается как сближение размерных зависимостей температур плавления и кристаллизации, так и уменьшение удельных значений теплоты и скачка объема при плавлении. Исходя из этих фактов, в [9] на основе экстраполяции этих размерных зависимостей, было указано, что при некотором N_0 возможно исчезновение ФП К-Ж в нано-системе. В данной работе на основе RP(vac)-модели с учетом делокализации атомов на поверхности Гиббса показано, что исчезновение ФП К-Ж обусловлено ростом доли делокализованных атомов при уменьшении размера нано-системы.

Отметим, что если в (4) принять: $\eta_{ds} = 0$, т.е. $x_d = x_{ds}$, то исчезновения ФП К-Ж не будет даже при $N_{po}^{0} = 2$, т.е. при N = 11. Этот результат есть следствие игнорирования того, что на поверхности Гиббса часть атомов делокализуется по более легкому, чем в объеме способу.

ЛИТЕРАТУРА

- 1. *Магомедов М.Н.* Об уравнении состояния простого вещества, описывающем трехфазное равновесие // Вестник МГТУ им. Н.Э. Баумана. Серия: Естеств. науки. 2013. № 2. С. 28–42.
- 2. *Магомедов М.Н.* Уравнение состояния нанокристалла с вакансиями // Поверхность. Рентген., синхротр., и нейтрон. исслед. 2018. № 2. С. 103 – 116.
- 3. *Магомедов М.Н.* Изучение межатомного взаимодействия, образования вакансий и самодиффузии в кристаллах. М.: Физматлит, 2010. 544 с.
- 4. *Магомедов М.Н.* О параметрах образования вакансий в кристаллах подгруппы углерода // Физика и Техника Полупроводников. 2008. Т. 42. № 10. С. 1153 – 1164.

- 5. *Магомедов М.Н.* О параметрах самодиффузии в кристаллах подгруппы углерода // Физика и Техника Полупроводников. 2010. Т. 44. № 3. С. 289–301.
- 6. *Магомедов М.Н.* О размерной зависимости спинодалей фазового перехода кристаллжидкость // Теплофизика Высоких Температур. 1992. Т. 30. № 3. С. 470–476.
- Lai S.L., Guo J.Y., Petrova V., Ramanath G., Allen L.H. Size-Dependent Melting Properties of Small Tin Particles: Nanocalorimetric Measurements // Physical Review Letters. 1996. V. 77. № 1. P. 99–102.
- Delogu F. Structural and Energetic Properties of Unsupported Cu Nanoparticles from Room Temperature to the Melting Point: Molecular Dynamics Simulations // Physical Review B. 2005. V. 72. № 1. P. 205418 (1-9).
- 9. *Магомедов М.Н.* О вычислении размерных зависимостей параметров фазового перехода кристалл-жидкость // Журнал Технической Физики. 2014. Т. 84. № 5. С. 46–51.

Данные результаты опубликованы нами в работах [7, 11, 14, 15] из списка научных публикаций по теме за отчетный период 1918 года.

4. Уравнение состояния и свойства изотопно-чистых алмазов из ¹²С и ¹³С

В последнее время были разработаны методы получения моноизотопных алмазов [1, 2]. Однако изменение свойств изотопно-чистых алмазов при сжатии исследовано крайне мало. В данной работе получены уравнение состояния, и барические зависимости термодинамических свойств для моноизотопных алмазов с массой атома m = 12 а.m.u. и m = 13 а.m.u. При расчетах использовался метод, предложенный в работе [3], где межатомное взаимодействие в алмазе описывается парным потенциалом Ми-Леннард-Джонса:

$$\varphi(r) = \frac{D}{(b-a)} \left[a \left(\frac{r_{\rm o}}{r}\right)^b - b \left(\frac{r_{\rm o}}{r}\right)^a \right]. \tag{1}$$

Здесь *D* и r_0 – глубина и координата минимума потенциала, b > a > 1 – численные параметры. Для алмаза с природным изотопным составом ^{nat}C = ^{12.01}C, (который близок к алмазу из ¹²C) было получено [3] (здесь k_B – постоянная Больцмана):

$$r_0 = 0.1545 \text{ nm}, \quad D/k_B = 97821.72 \text{ K}, \quad a = 2.05, \quad b = 3.79.$$
 (2)

Уравнение состояния и барические зависимости термодинамических свойств для алмаза из ^{nat}C были рассчитаны в [3], где было получено хорошее согласие с экспериментальными данными.

Известно, что при переходе от алмаза из ¹²С к алмазу из ¹³С расстояние между центрами ближайших атомов ($c = [6k_pV/(\pi N_A)]^{1/3}$) уменьшается [1, 4-6], а модуль упругости ($B = - [\partial P/\partial \ln(V)]_T$) возрастает [2, 4, 6, 7]:

$$c^* = \frac{c({}^{13}\mathrm{C})}{c({}^{12}\mathrm{C})} = 1 - \Delta_C, \qquad B^* = \frac{B({}^{13}\mathrm{C})}{B({}^{12}\mathrm{C})} = 1 + \Delta_B, \qquad (3)$$

где V – молярный объем, N_A – число Авогадро, k_p – коэффициент упаковки структуры кристалла, Δ_C и Δ_B – относительные изотопные смещения для параметра решетки и для модуля упругости.

Параметры потенциала (1) при переходе от 12 C к 13 C также изменяются в соответствии с (3). Так как у алмаза энергия химической связи много больше энергии «нулевых колебаний» атомов, то степени потенциала (1) с хорошей точностью определяются из соотношений [4]:

$$b = 6\gamma_0 - 2,$$
 $a = 3[B'(P)_0 - 2] - b,$ (4)

где $\gamma = - [\partial \ln(\Theta)/\partial \ln(V)]_T$ – первый параметр Грюнайзена, $B'(P) = (\partial B/\partial P)_T$ – производная изотермического модуля упругости по давлению. Индекс "0" в (4) означает, что данная величина определена при нулевых значениях температуры и давления: T = 0 К и P = 0. Как показали экспериментальные исследования в [2] и наши расчеты, значения γ_0 и $B'(P)_0$

практически не меняются при переходе от алмаза из 12 С к алмазу из 13 С. Поэтому степени потенциала (1) *а* и *b* можно считать независимыми от массы изотопа.

Глубина парного потенциала (1) для упругих (обратимых) деформаций алмаза определяется из модуля упругости и молярного объема при T = 0 K и P = 0 [4, 8-10]:

$$D_b = \frac{18B_0 V_0}{k_n a b N_A} = D_s + \Delta D , \qquad (5)$$

где k_n – первое координационное число (для алмаза $k_n = 4$ и $k_p = 0.3401$), D_s – глубина парного межатомного для пластической (необратимой) деформации алмаза, которая определяется из энергии сублимаци: $D_b/D_s = 8.43$ eV/3.68 eV = 2.29.

По результатом экспериментов, проведенных при температурах ниже температуры Дебая (Θ), были получены следующая оценка: $\Delta_C = 1.5 \cdot 10^{-4}$ [1, 5] и $\Delta_B = 1.5 \cdot 10^{-3}$ [6]. Поэтому, исходя из (3) и (5), в [4, 8-10] для относительного изменения параметров потенциала (1) было принято:

$$r_{\rm o}^{*} = \frac{r_{\rm o}^{(13}\,\rm C)}{r_{\rm o}^{(12}\,\rm C)} = 1 - \Delta_{C} = 0.99985 \quad , \qquad D^{*} = \frac{D(^{13}\,\rm C)}{D(^{12}\,\rm C)} = (1 + \Delta_{B})(1 - \Delta_{C})^{3} = 1.00105 \quad . \tag{6}$$

Однако, как было указано в [2], точность измерения модуля упругости алмаза не превышает 3 %, что не позволяет надежно определить не только величину Δ_B , но даже ее знак. В связи с этим в данной работе для оценки Δ_B были использованы результаты измерений отношения рамановских частот в изотопно-чистых алмазах, которые были проведены в [2].

Как было показано в [4] температура Дебая (Θ) при T = 0 К и P = 0 (т.е. при $c \approx r_0$) имеет следующую изотопную зависимость (здесь учтено, что у алмаза энергия парной межатомной связи много больше энергии «нулевых колебаний» атомов):

$$\Theta_0^* = \Theta_0({}^{13}\text{C})/\Theta_0({}^{12}\text{C}) \approx \{D^*/[(r_0^*)^2 m^*]\}^{1/2} = [(1 + \Delta_B)(1 - \Delta_C)/(1 + \Delta_m)]^{1/2},$$
(8)
где $m^* = 1 + \Delta_m$, т.е. для алмаза $\Delta_m = (13/12) - 1 = 0.0833.$

Как было указано в [4] величина Δ_B должна лежать в интервале: $3\Delta_C \leq \Delta_B < \Delta_m + \Delta_C$. Тогда для алмаза, при использовании $\Delta_C = 1.5 \cdot 10^{-4}$, получим: $4.5 \cdot 10^{-4} \leq \Delta_B < 0.08345$. Из этого условия видно, что величина Δ_B не может быть отрицательной, ибо энергия образования вакансии или самодиффузии не может уменьшаться при увеличении *m* в области $T >> \Theta_0$ и P = 0 [4].

В работе [2] для отношения рамановских частот в изотопно чистых алмазах при P = 0 получено: $v_0(^{12}C)/v_0(^{13}C) = 1.039$, что заметно отличается от классического значения: $v_0(^{12}C)/v_0(^{13}C) = (m^*)^{1/2} = (13/12)^{1/2} = 1.040833$. Полагая, что соблюдается равенство:

 $\Theta_0(^{12}\text{C})/\Theta_0(^{13}\text{C}) = v_0(^{12}\text{C})/v_0(^{13}\text{C})$, из формулы (8) при $\Delta_C = 1.5 \cdot 10^{-4}$ получим: $\Delta_B = 3.68 \cdot 10^{-3}$. Тогда используя $\Delta_C = 1.5 \cdot 10^{-4}$ и $\Delta_B = 3.68 \cdot 10^{-3}$ вместо D^* из (6) получим:

$$D^* = \frac{D({}^{13}\mathrm{C})}{D({}^{12}\mathrm{C})} = (1 + \Delta_B)(1 - \Delta_C)^3 = 1.00323 \quad .$$
(10)

Используя r_0^* из (6) и D^* из (10) для параметров потенциала (1) для алмаза из ¹³С получим: $r_0 = 0.15448$ nm, $D/k_B = 98137.68$ K, a = 2.05, b = 3.79. (11)

Используя метод, представленный в работе [3], нами были рассчитаны следующие свойства алмаза из ¹²С и из ¹³С: P(V, T) – уравнение состояния, Θ – температура Дебая и $\Theta'(P) = (\partial \Theta/\partial P)_T$ – производная Θ по давлению вдоль изотермы, первый ($\gamma = [\partial \ln(\Theta)/\partial \ln(V)]_T$), второй ($q = [\partial \ln(\gamma)/\partial \ln(V)]_T$) и третий ($z = - [\partial \ln(q)/\partial \ln(V)]_T$) параметры Грюнайзена, $B = - [\partial P/\partial \ln(V)]_T$ – изотермический модуль упругости и $B'(P) = (\partial B/\partial P)_T$, $\alpha_p =$ $[\partial \ln(V)/\partial T]_P$ – коэффициент теплового объемного расширения и $\alpha_p'(P) = (\partial \alpha_p/\partial P)_T$, $C_v =$ $\alpha_p \cdot B \cdot V/\gamma$ и $C_p = C_v(1 + \gamma \cdot \alpha_p \cdot T)$ – изохорная и изобарная теплоемкость, их производные по давлению: $C_v'(P) = (\partial C_v/\partial P)_T$ и $C_p'(P) = (\partial C_p/\partial P)_T$, произведение: $\alpha_p \cdot B = (\partial P/\partial T)_V$, σ – удельная (на единицу площади) поверхностная энергия грани (100), ее производные, как по температуре: $\sigma'(T) = (\partial \sigma/\partial T)_V$, так и по давлению: $\sigma'(P) = (\partial \sigma/\partial P)_T$.

Расчеты, выполненные при температуре T = 300 К для давлений от нуля до P = 10000 kbar = 10 Mbar = 1000 GPa = 1 TPa, показали следующее:

1. Зависимость P(V) для алмаза из ¹³С лежит чуть ниже, чем для алмаза из ¹²С. Сравнение данной зависимости с экспериментальными оценками для алмаза из ^{12.01}С было проведено нами в работе [4], поэтому здесь мы этого не делали. Расчеты показали, что при малых сжатиях ($V = 3.4 \text{ cm}^3/\text{mol}$) смещение изотермы равно: $\Delta P = P(^{12}\text{C}) - P(^{13}\text{C}) = 3.6$ kbar. Это хорошо согласуется со значением, экспериментально полученным в [11] при малых сжатиях и T = 300 K: $\Delta P = 2.7(8) = 1.9 - 3.5 \text{ kbar}$. Однако при уменьшении объема величина ΔP уменьшается. При $V = 2.5 \text{ cm}^3/\text{mol}$ было получено: $\Delta P = 0.3 \text{ kbar}$. Таким образом, в линейном приближении для зависимости $\Delta P(P)$ можно принять: $\Delta P/[\text{kbar}] = P(^{12}\text{C}) - P(^{13}\text{C}) = 3.6 - 13.285 \cdot 10^{-4} P/[\text{kbar}].$

2. Зависимости: $\Theta(P)$, q(P), z(P) возрастают с давлением, причем для алмаза из ¹³С данные зависимости лежат ниже, чем для алмаза из ¹²С. В работе *K.C. Hass* с соав. для алмаза из ¹³С при P = 0 также было получено возрастание температуры Дебая до 2114 К (при $\Theta(^{12}C) = 1860$ K) [6, 12]. Экспериментальных оценок q и z в литературе нет даже для алмаза из ^{nat}С при P = 0. Поэтому в расчетах часто полагают q = 0 [2].

3. Зависимости: $\gamma(P)$, B'(P), $\alpha_p(P)$, $C_v(P)$, $C_p(P)$ и $\alpha_p(P) \cdot B(P)$ убывают с давлением, причем для алмаза из ¹³С данные зависимости лежат выше, чем для алмаза из ¹²С.

Отметим, что изотопные зависимости для $\gamma(P)$ и B'(P) очень слабые, что обосновывает сделанное здесь допущение о независимости параметров потенциала (1) *a* и *b* от массы изотопа. Например, при P = 0 получено: B'(P) = 3.94783 (для ¹³C) и 3.94754 (для ¹²C), т.е. $\Delta B' = 3 \cdot 10^{-4}$; при P = 10000 kbar получено: B'(P) = 2.8557 (для ¹³C) и 2.8548 (для ¹²C), т.е. $\Delta B' = 9 \cdot 10^{-4}$.

4. Зависимость B(P) возрастает с давлением, как это было показано в [3]. Для алмаза из ¹³С данная зависимость лежит выше (при данном *P*), чем для алмаза из ¹²С, причем эта разница возрастает с ростом давления. При P = 0 получено: $\Delta B = B(^{13}C) - B(^{12}C) = 17$ kbar, а при P = 10000 kbar получено: $\Delta B = 30$ kbar. Поэтому в линейном приближении для зависимости $\Delta B(P)$ можно принять: $\Delta B/[kbar] = 17 + 1.3 \cdot 10^{-3}P/[kbar]$.

5. Зависимость $\Theta'(P)$ убывает с давлением, причем для алмаза из ¹³С данная зависимость лежит ниже, чем для алмаза из ¹²С.

6. Функции: $\alpha_p'(P)$, $C_{\nu}'(P)$ и $C_p'(P)$ лежат в отрицательной области, и их абсолютные значения убывают с давлением, как это и было показано в [3]. Изотопной зависимости для данных функций не обнаружено.

7. Как было показано в [4, 10, 13], барическая зависимость удельной поверхностной энергии $\sigma(P)$ с ростом давления возрастает до максимума при P_{max} , после чего уменьшается, переходя в отрицательную область. Удельная поверхностная энергия для алмаза из ¹³С больше, чем для алмаза из ¹²С, ибо при P = 0 выполняется [4, 10]: $\sigma_0({}^{13}\text{C})/\sigma_0({}^{12}\text{C}) \approx D^*/(r_0^*)^2$. Поэтому поверхность алмаза (как свободная, так и межкристаллитная) должна быть обогащена изотопом ¹²С [10].

8. Зависимость $\sigma'(T)$ лежит в отрицательной области, ее абсолютное значение убывает с давлением, и при $P \to \infty$ имеем $\sigma'(T) \to -0$. Величина $|\sigma'(T)|$ для алмаза из ¹³C больше, чем для алмаза из ¹²C. Функция $\sigma'(T)$ определяет удельную (на атом) энтропию, обусловленную наличием поверхности площадью Σ в системе из N атомов, в виде [14]: s_{sf} = $-(\Sigma/N)(\partial\sigma/\partial T)_{c, N}$. Поэтому при наличии поверхности (как свободной, так и межкристаллитной) получим: $s_{sf}(^{13}C) > s_{sf}(^{12}C)$, а при $P \to \infty$ имеем: $s_{sf}(^{13}C)$ и $s_{sf}(^{12}C) \to 0$ при любом значении Σ/N .

9. Функция $\sigma'(P)$ убывает с давлением, переходя при P_{max} в отрицательную область, причем изотопной зависимости для данной функции на интервале P = 0 - 10 Mbar не обнаружено.

ЛИТЕРАТУРА

1. Каминский А.А., Ральченко В.Г., Ёнеда Х., Большаков А.П., Инюшкин А.В. Моноизотопные ¹²С и ¹³С-алмазы – новейшие ВКР-активные кристаллы, как новый

этап развития алмазной фотоники // Письма в ЖЭТФ. 2016. Т. 104. № 5. С. 356 – 361.

- Энкович П.В., Бражкин В.В., Ляпин С.Г., Новиков А.П., Канда Х., Стишов С.М. Рамановская спектроскопия изотопически чистых ¹²C, ¹³C и изотопически смешанных ^{12.5}C монокристаллов алмаза при сверхвысоких давлениях // ЖЭТФ. 2016. Т. 150. № 3(9). С. 516 – 525.
- 3. *Магомедов М.Н.* Изменение теплофизических свойств алмаза при изотермическом сжатии // ЖТФ. 2017. Т. 87. № 5. С. 643 650.
- 4. *Магомедов М.Н.* Об изменении свойств алмаза при вариации изотопного состава углерода // Письма в ЖТФ. 2005. Т. 31. № 9. С. 50 – 57.
- Yamanaka T., Morimoto S., Kanda H. Influence of the isotope ratio on the lattice constant of diamond // Phys. Rev. B. 1994. V. 49. N 4. P. 9341 – 9343.
- *Плеханов В.Г.* Изотопические эффекты в динамике решетки // УФН. 2003. Т. 173. № 7. С. 711–738.
- Vogelgesang R., Ramdas A.K., Rodriguez S., Grimsdich M., Anthony T.R. Brillouin and Raman scattering in natural and isotopically controlled diamond // Phys. Rev. B. 1996. V. 54. N 6. P. 3989 – 3999.
- 8. *Магомедов М.Н.* Об изменении коэффициента самодиффузии при вариации изотопного состава кристалла // Письма в ЖТФ. 2006. Т. 32. № 10. С. 40 49.
- 9. *Магомедов М.Н.* Об изменении термоупругих свойств при вариации изотопного состава алмаза // Теплофизика Высоких Температур. 2009. Т. 47. № 3. С. 379 387.
- 10. *Магомедов М.Н.* Изменение размерных зависимостей поверхностных свойств наноалмаза при вариации изотопного состава // Поверхность. Рентген., синхротр., и нейтрон. исслед. 2014. № 2. С. 108 112.
- Gillet Ph., Fiquet G., Daniel I., Reynard B., Hanfland M. Equations of state of ¹²C and ¹³C diamond // Phys. Rev. B. 1999. V. 60. N 21. P. 14660 14664.
- 12. *Hass K.C., Tamor M.A., Anthony T.R., Banholzer W.F.* Lattice dynamics and Raman spectra of isotopically mixed diamond // Phys. Rev. B. 1992. V. 45. N 13. 7171 7182.
- 13. *Магомедов М.Н.* О самодиффузии и поверхностной энергии при сжатии алмаза, кремния и германия // ЖТФ. 2013. Т. 83. № 12. С. 87–96.
- 14. *Магомедов М.Н.* О температурной зависимости теплоемкости нанокристалла // Поверхность. Рентген., синхротр., и нейтрон. исслед. 2012. № 1. С. 99–104.

Данные результаты опубликованы нами в работах [5, 9] из списка научных публикаций по теме за отчетный период 1918 года.

Статьи в рецензируемых научных журналах 6

(знаком W отмечены работы, индексируемые в базе данных WEB of Science, знаком S отмечены работы, индексируемые в базе данных Scopus,

знаком R отмечены работы, индексируемые в базе данных РИНЦ): W S R

1. Магомедов M.H.Уравнение состояния нанокристалла с вакансиями И диффундирующими атомами // Известия Кабардино-Балкарского государственного 2017. 7. № 3. C. 47 **университета.** _ T. 53. _ http://izvestia.kbsu.ru/arhiv/izv t7n3 2017.pdf R

2. *Магомедов М.Н.* Уравнение состояния нанокристалла с вакансиями // Поверхность. **Рентген., синхротр., и нейтрон. исслед.** – 2018, № 2. – С. 103 – 116. [*M.N. Magomedov.* State Equation of a Nanocrystal with Vacancies // Journal of Surface Investigation. X-ray, **Synchrotron and Neutron Techniques**, 2018, Vol. 12, No. 1, p. 185 – 196.] **DOI:** 10.1134/S1027451018010299 **W S R**

3. *Магомедов М.Н.* О вычислении температуры Дебая и температуры фазового перехода кристалл-жидкость для бинарного сплава замещения // Физика Твердого Тела. – 2018. – Т. 60, № 5. – С. 970 – 977. [*M.N. Magomedov.* On the Calculation of the Debye Temperature and Crystal–Liquid Phase Transition Temperature of a Binary Substitution Alloy // Physics of the Solid State, 2018, Vol. 60, No. 5, p. 981–988.] DOI: 10.1134/S1063783418050190 W S R 4. *Магомедов М.Н.* Об изменении барических свойств при уменьшении размера нанокристалла кремния // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов: межвуз. сб. науч. тр. / под общей редакцией В.М.

Самсонова, Н.Ю. Сдобнякова. – Тверь: Твер. гос. ун-т, 2018. – Вып. 10. – 708 с. (С. 434 – 445.) **DOI:** 10.26456/pcascnn/2018.10.434 **R**

5. *Magomedov M.N.* The baric properties of isotope-pure diamonds from ${}^{12}C$ and ${}^{13}C$ // Materials Today: Proceedings. – 2018. – V. 5, No 12. – Part 3. – P. 26025-26032. DOI: 10.1016/j.matpr.2018.08.023 W S R

6. *Magomedov M.N.* On the baric dependence of the melting point of iron // Applied Solid State Chemistry. – 2018. – № 3(4). – Р. 41-45. DOI: 10.18572/2619-0141-2018-3-4-41-45 **R** <u>Статьи и тезисы в сборниках и трудах конференций 12:</u>

7. *Магомедов М.Н.* О зависимости S-петли плавления от размера и формы нанокристалла простого вещества // VIII Международная научная конференция «Химическая термодинамика и кинетика»: Сборник научных трудов. – Россия, г. Тверь, 28 мая – 1 июня 2018 г. – Тверь: Изд-во Тверского государственного университета, 2018. – 453 с. (С. 220 – 221.) **R**

8. *Магомедов М.Н.* Зависимость модуля упругости от размера и формы нанокристалла аргона // VIII Международная научная конференция «Химическая термодинамика и кинетика»: Сборник научных трудов. – Россия, г. Тверь, 28 мая – 1 июня 2018 г. – Тверь: Изд-во Тверского государственного университета, 2018. – 453 с. (С. 222 – 223.) **R**

9. *Магомедов М.Н.* О барических свойствах изотопно-чистых алмазов из 12С и 13С // «Углерод: фундаментальные проблемы науки, материаловедение, технология»: Сборник тезисов докладов 11-й Международной конференции. – Россия, г. Троицк, Россия, 29 мая – 1 июня 2018 г. – Троицк: Изд-во ФГБНУ «Технологический институт сверхтвердых и новых углеродных материалов», 2018. – 558 с. (С. 291–293.) **R**

10. *Магомедов М.Н.* О металлизации алмаза при сжатии или растяжении // «Углерод: фундаментальные проблемы науки, материаловедение, технология»: Сборник тезисов докладов 11-й Международной конференции. – Россия, г. Троицк, Россия, 29 мая – 1 июня 2018 г. – Троицк: Изд-во ФГБНУ «Технологический институт сверхтвердых и новых углеродных материалов», 2018. – 558 с. (С. 294 – 297.) **R**

11. *Магомедов М.Н.* Об исчезновении фазового перехода кристалл-жидкость при уменьшении размера наносистемы // Х Международная научная конференция «Кинетика и механизм кристаллизации. Кристаллизация и материалы нового поколения»: Тезисы докладов. – Россия, г. Суздаль, 1 – 6 июля 2018. – Иваново: Изд-во ОА «Ивановский издательский дом», 2018. – 502 с. (С. 239.) **R**

12. *Магомедов М.Н.* О вычислении температур солидус и ликвидус для бинарного твердого раствора // Х Международная научная конференция «Кинетика и механизм кристаллизации. Кристаллизация и материалы нового поколения»: Тезисы докладов. – Россия, г. Суздаль, 1 – 6 июля 2018. – Иваново: Изд-во ОА «Ивановский издательский дом», 2018. – 502 с. (С. 240.) **R**

13. *Магомедов М.Н.* Об изменении модуля упругости при изохорическом и изобарическом уменьшении размера нанокристалла // Восьмой Международный междисциплинарный симпозиум «Физика поверхностных явлений, межфазных границ и фазовые переходы (ФПЯ и ФП) "Physics of surface phenomena, interfaces boundaries and phase transitions" (PSP & PT)». Труды симпозиума. – Россия, г. Нальчик– г. Ростов-на-Дону – г. Грозный – пос. Шепси, 12 – 16 сентября 2018 г. – Ростов-на-Дону: Изд-во Фонд науки и образования, 2018. – 264 с. (С. 89 – 92.) **R**

14. *Магомедов М.Н.* Об исчезновении фазового перехода кристалл-жидкость при уменьшении числа атомов в системе // Восьмой Международный междисциплинарный симпозиум «Физика поверхностных явлений, межфазных границ и фазовые переходы (ФПЯ и ФП) "Physics of surface phenomena, interfaces boundaries and phase transitions" (PSP

52

& РТ)». Труды симпозиума. – Россия, г. Нальчик– г. Ростов-на-Дону – г. Грозный – пос. Шепси, 12 – 16 сентября 2018 г. – Ростов-на-Дону: Изд-во Фонд науки и образования, 2018. – 264 с. (С. 93 – 96.) **R**

15. *Магомедов М.Н.* Изменение фазовой диаграммы простого вещества при уменьшении размера наносистемы // XV Российская конференция (с международным участием) по теплофизическим свойствам веществ (РКТС-15): Тезисы докладов – Россия, г. Москва, 15 – 17 октября 2018. – Москва: Изд-во «Янус-К», 2018. – 200 с. (С. 119.) [*Magomedov M.N.* Change in the phase diagram of a simple matter with a decrease in the size of the nanosystem // XV Russian Conference (with international participation) on Thermophysical Properties of Substances (RCTP-15): Book of abstracts. – Russia, г. Moscow, October 15 – 17, 2018. – Moscow: Изд-во «Отечество», 2018. – 178 р. (Р. 109.)] **R**

16. *Магомедов М.Н.* Изменение параметров плавления при барической фрагментации простого вещества // Возобновляемая энергетика: проблемы и перспективы. Актуальные проблемы освоения возобновляемых энергоресурсов // Материалы XI школы молодых ученых «Актуальные проблемы освоения возобновляемых энергоресурсов» имени чл.-корр. РАН Э.Э. Шпильрайна. 15 – 18 октября 2018 г. – Россия, г. Махачкала: Изд-во АЛЕФ, 2018. – 454 с. (С. 258 – 272.) **R**

17. *Магомедов М.Н.* Об уравнении состояния и барической металлизации кремния и германия // Электронный журнал. – 2018. - № 4. – стр. 59. URL: <u>http://pti-nt.ru/ru/issue/publication/537-ob-uravnenii-sostoyaniya-i-baricheskoiy-metallizacii-kremniya-i-germaniya</u>

18. *Магомедов М.Н.* Об уравнении состояния и плавлении ГЦК-железа при высоких давлениях // Электронный журнал. – 2018. - № 4. – стр. 64. URL: <u>http://pti-nt.ru/ru/issue/publication/538-ob-uravnenii-sostoyaniya-i-plavlenii-gck-jeleza-pri-vysokih-davleniyah</u>

<u>Заключение</u>

Таким образом, основные задания, намеченные на 2018 год, выполнены полностью:

1. Получено выражение для свободной энергии Гельмгольца и рассчитано уравнение состояния для нанокристалла, в котором имеются как вакансии в решетке, так и делокализованные (диффундирующие) атомы. Расчеты проведены для ОЦК железа при изотермическом сжатии нанокристалла вдоль изотерм 300 и 1000 К. Показано, что при атмосферном давлении и T = 300 К нанокристалл содержит меньше вакансий на атом, чем макрокристалл, но при T = 1000 К диспергирование макрокристалла ведет к росту вероятности образования вакансий. При уменьшении размера нанокристалла вероятность делокализации атома (как и коэффициент самодиффузии) возрастает при любом давлении и температуре. Опубликовано в работах [1, 2, 4].

2. Предложена методика расчёта температуры Дебая и параметров Грюнайзена для бинарного сплава замещения. На основании данной методики и критерия плавления Линдеманна разработан метод расчета температур солидуса и ликвидуса для неупорядоченного сплава замещения. Методика протестирована на сплаве SiGe и показала хорошее согласие с экспериментальными данными. Показано, что при уменьшении размера нанокристалла твердого раствора замещения разница между температурами ликвидуса и солидуса уменьшатся тем больше, чем заметнее форма нанокристалла отклонена от наиболее энергетически оптимальной формы. Опубликовано в работах [**3**, **12**].

3. На основании модели нанокристалла с вакансиями и делокализованными атомами сделаны расчеты уравнения состояния аргона. Показало, что при уменьшении числа атомов в системе S-петля на изотерме уравнения состояния для фазового перехода (ФП) кристалл-жидкость (К-Ж) уменьшается, и при определенном числе атомов (N_0) S-петля ФПК-Ж исчезает. Показано, что величина N_0 увеличивается при отклонении формы наносистемы от наиболее энергетически оптимальной формы. С ростом температуры на изотерме величина N_0 увеличивается. В кластере из $N < N_0$ атомов ФПК-Ж уже нет. Опубликовано в работах [7, 11, 14, 15].

4. Определены параметры потенциала межатомного взаимодействия для алмаза из 12 C и из 13 C. На основе полученных параметров рассчитаны как уравнение состояния, так и барические зависимости решеточных свойств изотопно-чистых алмазов при температуре 300 К. Указано – какие решеточные свойства алмаза имеют заметную изотопную зависимость, и как эти зависимости меняются с ростом давления. Опубликовано в работах [5, 9].

54